2
0
Fork 0

rewrote (C): to use new Gradient formula,

rewrote (C): subroutine interface to use matrix struct
This commit is contained in:
Daniel Kapla 2019-12-05 17:35:29 +01:00
parent 5638821b85
commit 4b68c245a6
31 changed files with 1915 additions and 858 deletions

View File

@ -4,7 +4,6 @@ S3method(coef,cve)
S3method(directions,cve) S3method(directions,cve)
S3method(plot,cve) S3method(plot,cve)
S3method(predict,cve) S3method(predict,cve)
S3method(predict.dim,cve)
S3method(summary,cve) S3method(summary,cve)
export(cve) export(cve)
export(cve.call) export(cve.call)
@ -13,7 +12,7 @@ export(directions)
export(elem.pairs) export(elem.pairs)
export(estimate.bandwidth) export(estimate.bandwidth)
export(null) export(null)
export(predict.dim) export(predict_dim)
export(projTangentStiefel) export(projTangentStiefel)
export(rStiefel) export(rStiefel)
export(retractStiefel) export(retractStiefel)

View File

@ -45,6 +45,7 @@
#' below. #' below.
#' \item "weighted" variation with addaptive weighting of slices. #' \item "weighted" variation with addaptive weighting of slices.
#' } #' }
#' @param max.dim upper bounds for \code{k}, (ignored if \code{k} is supplied).
#' @param ... Parameters passed on to \code{cve.call}. #' @param ... Parameters passed on to \code{cve.call}.
#' #'
#' @return an S3 object of class \code{cve} with components: #' @return an S3 object of class \code{cve} with components:
@ -58,19 +59,54 @@
#' } #' }
#' #'
#' @examples #' @examples
#' # create dataset #' # set dimensions for simulation model
#' x <- matrix(rnorm(400), 100, 4) #' p <- 8
#' y <- x[, 1] + x[, 2] + as.matrix(rnorm(100)) #' k <- 2
#' #' # create B for simulation
#' # Call CVE. #' b1 <- rep(1 / sqrt(p), p)
#' dr <- cve(y ~ x) #' b2 <- (-1)^seq(1, p) / sqrt(p)
#' # Call weighted CVE. #' B <- cbind(b1, b2)
#' dr.weighted <- cve(y ~ x, method = "weighted") #' # samplsize
#' #' n <- 200
#' # Training data responces of reduced data. #' set.seed(21)
#' y.est <- directions(dr, 1) #' # creat predictor data x ~ N(0, I_p)
#' # Extract SDR subspace basis of dimension 1. #' x <- matrix(rnorm(n * p), n, p)
#' B <- coef(dr.momentum, 1) #' # simulate response variable
#' # y = f(B'x) + err
#' # with f(x1, x2) = x1^2 + 2 * x2 and err ~ N(0, 0.25^2)
#' y <- (x %*% b1)^2 + 2 * (x %*% b2) + 0.25 * rnorm(100)
#' # calculate cve with method 'simple' for k unknown in 1, ..., 4
#' cve.obj.s <- cve(y ~ x, max.dim = 4) # default method 'simple'
#' # calculate cve with method 'weighed' for k = 2
#' cve.obj.w <- cve(y ~ x, k = 2, method = 'weighted')
#' # estimate dimension from cve.obj.s
#' khat <- predict_dim(cve.obj.s)$k
#' # get cve-estimate for B with dimensions (p, k = khat)
#' B2 <- coef(cve.obj.s, k = khat)
#' # get projected X data (same as cve.obj.s$X %*% B2)
#' proj.X <- directions(cve.obj.s, k = khat)
#' # plot y against projected data
#' plot(proj.X[, 1], y)
#' plot(proj.X[, 2], y)
#' # creat 10 new x points and y according to model
#' x.new <- matrix(rnorm(10 * p), 10, p)
#' y.new <- (x.new %*% b1)^2 + 2 * (x.new %*% b2) + 0.25 * rnorm(10)
#' # predict y.new
#' yhat <- predict(cve.obj.s, x.new, khat)
#' plot(y.new, yhat)
#' # projection matrix on span(B)
#' # same as B %*% t(B) since B is semi-orthogonal
#' PB <- B %*% solve(t(B) %*% B) %*% t(B)
#' # cve estimates for B with simple and weighted method
#' B.s <- coef(cve.obj.s, k = 2)
#' B.w <- coef(cve.obj.w, k = 2)
#' # same as B.s %*% t(B.s) since B.s is semi-orthogonal (same vor B.w)
#' PB.s <- B.s %*% solve(t(B.s) %*% B.s) %*% t(B.s)
#' PB.w <- B.w %*% solve(t(B.w) %*% B.w) %*% t(B.w)
#' # compare estimation accuracy of simple and weighted cve estimate by
#' # Frobenius norm of difference of projections.
#' norm(PB - PB.s, type = 'F')
#' norm(PB - PB.w, type = 'F')
#' #'
#' @seealso For a detailed description of \code{formula} see #' @seealso For a detailed description of \code{formula} see
#' \code{\link{formula}}. #' \code{\link{formula}}.
@ -107,6 +143,12 @@ cve <- function(formula, data, method = "simple", max.dim = 10L, ...) {
#' \code{\link{estimate.bandwidth}} (ignored if \code{h} is supplied). #' \code{\link{estimate.bandwidth}} (ignored if \code{h} is supplied).
#' @param X data matrix with samples in its rows. #' @param X data matrix with samples in its rows.
#' @param Y Responses (1 dimensional). #' @param Y Responses (1 dimensional).
#' @param method specifies the CVE method variation as one of
#' \itemize{
#' \item "simple" exact implementation as described in the paper listed
#' below.
#' \item "weighted" variation with addaptive weighting of slices.
#' }
#' @param k Dimension of lower dimensional projection, if \code{k} is given #' @param k Dimension of lower dimensional projection, if \code{k} is given
#' only the specified dimension \code{B} matrix is estimated. #' only the specified dimension \code{B} matrix is estimated.
#' @param min.dim lower bounds for \code{k}, (ignored if \code{k} is supplied). #' @param min.dim lower bounds for \code{k}, (ignored if \code{k} is supplied).
@ -124,28 +166,35 @@ cve <- function(formula, data, method = "simple", max.dim = 10L, ...) {
#' @param slack Positive scaling to allow small increases of the loss while #' @param slack Positive scaling to allow small increases of the loss while
#' optimizing. #' optimizing.
#' @param gamma step-size reduction multiple. #' @param gamma step-size reduction multiple.
#' @param V.init Semi-orthogonal matrix of dimensions `(ncol(X), ncol(X) - k)` #' as optimization starting value. (If supplied, \code{attempts} is #' @param V.init Semi-orthogonal matrix of dimensions `(ncol(X), ncol(X) - k)
#' as optimization starting value. (If supplied, \code{attempts} is
#' set to 1 and \code{k} to match dimension) #' set to 1 and \code{k} to match dimension)
#' #'
#' @inherit cve return #' @inherit cve return
#' #'
#' @examples #' @examples
#' # Create a dataset (n samples): #' # create B for simulation (k = 1)
#' n <- 100 #' B <- rep(1, 5) / sqrt(5)
#' X <- matrix(rnorm(4 * n), n)
#' Y <- matrix(X[, 1] + cos(X[, 2]) + rnorm(n, 0, .1), n)
#' #'
#' # Create logger function: #' set.seed(21)
#' logger <- function(attempt, iter, data) { #' # creat predictor data X ~ N(0, I_p)
#' if (iter == 0) { #' X <- matrix(rnorm(500), 100, 5)
#' cat("Starting attempt nr:", attempt, "\n") #' # simulate response variable
#' } #' # Y = f(B'X) + err
#' cat(" iter:", iter, "loss:", data$loss, "\n") #' # with f(x1) = x1 and err ~ N(0, 0.25^2)
#' } #' Y <- X %*% B + 0.25 * rnorm(100)
#' #'
#' Call 'cve' with logger: #' # calculate cve with method 'simple' for k = 1
#' cve(Y ~ X, logger = logger) #' set.seed(21)
#' cve.obj.simple1 <- cve(Y ~ X, k = 1)
#' #'
#' # same as
#' set.seed(21)
#' cve.obj.simple2 <- cve.call(X, Y, k = 1)
#'
#' # extract estimated B's.
#' coef(cve.obj.simple1, k = 1)
#' coef(cve.obj.simple2, k = 1)
#' @export #' @export
cve.call <- function(X, Y, method = "simple", cve.call <- function(X, Y, method = "simple",
nObs = sqrt(nrow(X)), h = NULL, nObs = sqrt(nrow(X)), h = NULL,
@ -178,7 +227,7 @@ cve.call <- function(X, Y, method = "simple",
} }
if (!(is.matrix(X) && is.numeric(X))) { if (!(is.matrix(X) && is.numeric(X))) {
stop("Parameter 'X' should be a numeric matrices.") stop("Parameter 'X' should be a numeric matrix.")
} }
if (!is.numeric(Y)) { if (!is.numeric(Y)) {
stop("Parameter 'Y' must be numeric.") stop("Parameter 'Y' must be numeric.")
@ -288,7 +337,7 @@ cve.call <- function(X, Y, method = "simple",
h <- estimate.bandwidth(X, k, nObs) h <- estimate.bandwidth(X, k, nObs)
} }
dr.k <- .Call('cve', PACKAGE = 'CVE', dr.k <- .Call('cve_export', PACKAGE = 'CVE',
X, Y, k, h, X, Y, k, h,
method_nr, method_nr,
V.init, V.init,

View File

@ -9,10 +9,35 @@
#' @return dir the matrix of CS or CMS of given dimension #' @return dir the matrix of CS or CMS of given dimension
#' #'
#' @examples #' @examples
#' x <- matrix(rnorm(400),100,4) #' # set dimensions for simulation model
#' y <- x[, 1] + x[, 2] + as.matrix(rnorm(100)) #' p <- 8 # sample dimension
#' dr <- cve(y ~ x, k = 2) # Only for sub-space dim. 2 #' k <- 2 # real dimension of SDR subspace
#' B2 <- coef(dr, 2) #' n <- 200 # samplesize
#' # create B for simulation
#' b1 <- rep(1 / sqrt(p), p)
#' b2 <- (-1)^seq(1, p) / sqrt(p)
#' B <- cbind(b1, b2)
#'
#' set.seed(21)
#' # creat predictor data x ~ N(0, I_p)
#' x <- matrix(rnorm(n * p), n, p)
#' # simulate response variable
#' # y = f(B'x) + err
#' # with f(x1, x2) = x1^2 + 2 * x2 and err ~ N(0, 0.25^2)
#' y <- (x %*% b1)^2 + 2 * (x %*% b2) + 0.25 * rnorm(100)
#' # calculate cve for k = 1, ..., 5
#' cve.obj <- cve(y ~ x, max.dim = 5)
#' # get cve-estimate for B with dimensions (p, k = 2)
#' B2 <- coef(cve.obj, k = 2)
#'
#' # Projection matrix on span(B)
#' # equivalent to `B %*% t(B)` since B is semi-orthonormal
#' PB <- B %*% solve(t(B) %*% B) %*% t(B)
#' # Projection matrix on span(B2)
#' # equivalent to `B2 %*% t(B2)` since B2 is semi-orthonormal
#' PB2 <- B2 %*% solve(t(B2) %*% B2) %*% t(B2)
#' # compare estimation accuracy by Frobenius norm of difference of projections
#' norm(PB - PB2, type = 'F')
#' #'
#' @method coef cve #' @method coef cve
#' @aliases coef.cve #' @aliases coef.cve

View File

@ -8,6 +8,24 @@ directions <- function(dr, k) {
#' @param dr Instance of 'cve' as returned by \code{cve}. #' @param dr Instance of 'cve' as returned by \code{cve}.
#' @param k SDR dimension to use for projection. #' @param k SDR dimension to use for projection.
#' #'
#' @examples
#' # create B for simulation (k = 1)
#' B <- rep(1, 5) / sqrt(5)
#' set.seed(21)
#' # creat predictor data x ~ N(0, I_p)
#' x <- matrix(rnorm(500), 100, 5)
#' # simulate response variable
#' # y = f(B'x) + err
#' # with f(x1) = x1 and err ~ N(0, 0.25^2)
#' y <- x %*% B + 0.25 * rnorm(100)
#' # calculate cve with method 'simple' for k = 1
#' set.seed(21)
#' cve.obj.simple <- cve(y ~ x, k = 1, method = 'simple')
#' # get projected data for k = 1
#' x.proj <- directions(cve.obj.simple, k = 1)
#' # plot y against projected data
#' plot(x.proj, y)
#'
#' @method directions cve #' @method directions cve
#' @aliases directions directions.cve #' @aliases directions directions.cve
#' @export #' @export

View File

@ -14,6 +14,25 @@
#' #'
#' @return Estimated bandwidth \code{h}. #' @return Estimated bandwidth \code{h}.
#' #'
#' @examples
#' # set dimensions for simulation model
#' p <- 5; k <- 1
#' # create B for simulation
#' B <- rep(1, p) / sqrt(p)
#' # samplsize
#' n <- 100
#' set.seed(21)
#' #creat predictor data x ~ N(0, I_p)
#' x <- matrix(rnorm(n * p), n, p)
#' # simulate response variable
#' # y = f(B'x) + err
#' # with f(x1) = x1 and err ~ N(0, 0.25^2)
#' y <- x %*% B + 0.25 * rnorm(100)
#' # calculate cve with method 'simple' for k = 1
#' set.seed(21)
#' cve.obj.simple <- cve(y ~ x, k = k)
#' print(cve.obj.simple$res$'1'$h)
#' print(estimate.bandwidth(x, k = k))
#' @export #' @export
estimate.bandwidth <- function(X, k, nObs) { estimate.bandwidth <- function(X, k, nObs) {
n <- nrow(X) n <- nrow(X)

View File

@ -5,6 +5,31 @@
#' @param x Object of class \code{"cve"} (result of [\code{\link{cve}}]). #' @param x Object of class \code{"cve"} (result of [\code{\link{cve}}]).
#' @param ... Pass through parameters to [\code{\link{plot}}] and #' @param ... Pass through parameters to [\code{\link{plot}}] and
#' [\code{\link{lines}}] #' [\code{\link{lines}}]
#' @examples
#' # create B for simulation
#' B <- cbind(rep(1, 6), (-1)^seq(6)) / sqrt(6)
#'
#' set.seed(21)
#' # creat predictor data x ~ N(0, I_p)
#' X <- matrix(rnorm(600), 100)
#'
#' # simulate response variable
#' # y = f(B'x) + err
#' # with f(x1, x2) = x1^2 + 2 x2 and err ~ N(0, 0.25^2)
#' Y <- (X %*% B[, 1])^2 + 2 * X %*% B[, 2] + rnorm(100, 0, .1)
#'
#' # Create bandwidth estimation function
#' estimate.bandwidth <- function(X, k, nObs) {
#' n <- nrow(X)
#' p <- ncol(X)
#' X_c <- scale(X, center = TRUE, scale = FALSE)
#' 2 * qchisq((nObs - 1) / (n - 1), k) * sum(X_c^2) / (n * p)
#' }
#' # calculate cve with method 'simple' for k = min.dim,...,max.dim
#' cve.obj.simple <- cve(Y ~ X, h = estimate.bandwidth, nObs = sqrt(nrow(X)))
#'
#' # elbow plot
#' plot(cve.obj.simple)
#' #'
#' @seealso see \code{\link{par}} for graphical parameters to pass through #' @seealso see \code{\link{par}} for graphical parameters to pass through
#' as well as \code{\link{plot}}, the standard plot utility. #' as well as \code{\link{plot}}, the standard plot utility.

View File

@ -10,6 +10,32 @@
#' #'
#' @return prediced response of data \code{newdata}. #' @return prediced response of data \code{newdata}.
#' #'
#' @examples
#' # create B for simulation
#' B <- rep(1, 5) / sqrt(5)
#'
#' set.seed(21)
#' # creat predictor data x ~ N(0, I_p)
#' x <- matrix(rnorm(500), 100)
#'
#' # simulate response variable
#' # y = f(B'x) + err
#' # with f(x1) = x1 and err ~ N(0, 0.25^2)
#' y <- x %*% B + 0.25 * rnorm(100)
#'
#' x.train <- x[1:80, ]
#' x.test <- x[81:100, ]
#' y.train <- y[1:80, ]
#' y.test <- y[81:100, ]
#'
#' # calculate cve with method 'simple' for k = 1
#' cve.obj.simple <- cve(y.train ~ x.train, k = 1)
#'
#' # predict y.test from x.test
#' yhat <- predict(cve.obj.simple, x.test, 1)
#'
#' # plot prediction against y.test
#' plot(yhat, y.test)
#' @seealso \code{\link{cve}}, \code{\link{cve.call}} or \pkg{\link{mars}}. #' @seealso \code{\link{cve}}, \code{\link{cve.call}} or \pkg{\link{mars}}.
#' #'
#' @rdname predict.cve #' @rdname predict.cve

View File

@ -10,15 +10,26 @@
#' \item k: predicted dimensions. #' \item k: predicted dimensions.
#' } #' }
#' #'
#' @examples
#' # create B for simulation
#' B <- rep(1, 5) / sqrt(5)
#'
#' set.seed(21)
#' # creat predictor data x ~ N(0, I_p)
#' x <- matrix(rnorm(500), 100)
#'
#' # simulate response variable
#' # y = f(B'x) + err
#' # with f(x1) = x1 and err ~ N(0, 0.25^2)
#' y <- x %*% B + 0.25 * rnorm(100)
#'
#' # Calculate cve for unknown k between min.dim and max.dim.
#' cve.obj.simple <- cve(y ~ x)
#'
#' predict_dim(cve.obj.simple)
#'
#' @export #' @export
predict.dim <- function(object, ...) { predict_dim <- function(object, ...) {
UseMethod("predict.dim")
}
#' @aliases predict.dim
#' @method predict.dim cve
#' @export
predict.dim.cve <- function(object, ...) {
# Get centered training data and dimensions # Get centered training data and dimensions
X <- scale(object$X, center = TRUE, scale = FALSE) X <- scale(object$X, center = TRUE, scale = FALSE)
n <- nrow(object$X) # umber of training data samples n <- nrow(object$X) # umber of training data samples

View File

@ -1,6 +1,25 @@
#' Prints a summary of a \code{cve} result. #' Prints a summary of a \code{cve} result.
#' @param object Instance of 'cve' as returned by \code{cve}. #' @param object Instance of 'cve' as returned by \code{cve}.
#' @param ... ignored. #' @param ... ignored.
#'
#' @examples
#' # create B for simulation
#' B <- rep(1, 5) / sqrt(5)
#'
#' set.seed(21)
#' #creat predictor data x ~ N(0, I_p)
#' x <- matrix(rnorm(500), 100)
#'
#' # simulate response variable
#' # y = f(B'x) + err
#' # with f(x1) = x1 and err ~ N(0, 0.25^2)
#' y <- x %*% B + 0.25 * rnorm(100)
#'
#' # calculate cve for unknown k between min.dim and max.dim.
#' cve.obj.simple <- cve(y ~ x)
#'
#' summary(cve.obj.simple)
#'
#' @method summary cve #' @method summary cve
#' @export #' @export
summary.cve <- function(object, ...) { summary.cve <- function(object, ...) {

View File

@ -21,9 +21,34 @@ dir the matrix of CS or CMS of given dimension
Returns the SDR basis matrix for SDR dimension(s). Returns the SDR basis matrix for SDR dimension(s).
} }
\examples{ \examples{
x <- matrix(rnorm(400),100,4) # set dimensions for simulation model
y <- x[, 1] + x[, 2] + as.matrix(rnorm(100)) p <- 8 # sample dimension
dr <- cve(y ~ x, k = 2) # Only for sub-space dim. 2 k <- 2 # real dimension of SDR subspace
B2 <- coef(dr, 2) n <- 200 # samplesize
# create B for simulation
b1 <- rep(1 / sqrt(p), p)
b2 <- (-1)^seq(1, p) / sqrt(p)
B <- cbind(b1, b2)
set.seed(21)
# creat predictor data x ~ N(0, I_p)
x <- matrix(rnorm(n * p), n, p)
# simulate response variable
# y = f(B'x) + err
# with f(x1, x2) = x1^2 + 2 * x2 and err ~ N(0, 0.25^2)
y <- (x \%*\% b1)^2 + 2 * (x \%*\% b2) + 0.25 * rnorm(100)
# calculate cve for k = 1, ..., 5
cve.obj <- cve(y ~ x, max.dim = 5)
# get cve-estimate for B with dimensions (p, k = 2)
B2 <- coef(cve.obj, k = 2)
# Projection matrix on span(B)
# equivalent to `B \%*\% t(B)` since B is semi-orthonormal
PB <- B \%*\% solve(t(B) \%*\% B) \%*\% t(B)
# Projection matrix on span(B2)
# equivalent to `B2 \%*\% t(B2)` since B2 is semi-orthonormal
PB2 <- B2 \%*\% solve(t(B2) \%*\% B2) \%*\% t(B2)
# compare estimation accuracy by Frobenius norm of difference of projections
norm(PB - PB2, type = 'F')
} }

View File

@ -20,6 +20,8 @@ supplied.}
\item "weighted" variation with addaptive weighting of slices. \item "weighted" variation with addaptive weighting of slices.
}} }}
\item{max.dim}{upper bounds for \code{k}, (ignored if \code{k} is supplied).}
\item{...}{Parameters passed on to \code{cve.call}.} \item{...}{Parameters passed on to \code{cve.call}.}
} }
\value{ \value{
@ -58,19 +60,54 @@ a real \eqn{p \times k}{p x k} of rank \eqn{k <= p}{k \leq p}.
Without loss of generality \eqn{B} is assumed to be orthonormal. Without loss of generality \eqn{B} is assumed to be orthonormal.
} }
\examples{ \examples{
# create dataset # set dimensions for simulation model
x <- matrix(rnorm(400), 100, 4) p <- 8
y <- x[, 1] + x[, 2] + as.matrix(rnorm(100)) k <- 2
# create B for simulation
# Call CVE. b1 <- rep(1 / sqrt(p), p)
dr <- cve(y ~ x) b2 <- (-1)^seq(1, p) / sqrt(p)
# Call weighted CVE. B <- cbind(b1, b2)
dr.weighted <- cve(y ~ x, method = "weighted") # samplsize
n <- 200
# Training data responces of reduced data. set.seed(21)
y.est <- directions(dr, 1) # creat predictor data x ~ N(0, I_p)
# Extract SDR subspace basis of dimension 1. x <- matrix(rnorm(n * p), n, p)
B <- coef(dr.momentum, 1) # simulate response variable
# y = f(B'x) + err
# with f(x1, x2) = x1^2 + 2 * x2 and err ~ N(0, 0.25^2)
y <- (x \%*\% b1)^2 + 2 * (x \%*\% b2) + 0.25 * rnorm(100)
# calculate cve with method 'simple' for k unknown in 1, ..., 4
cve.obj.s <- cve(y ~ x, max.dim = 4) # default method 'simple'
# calculate cve with method 'weighed' for k = 2
cve.obj.w <- cve(y ~ x, k = 2, method = 'weighted')
# estimate dimension from cve.obj.s
khat <- predict_dim(cve.obj.s)$k
# get cve-estimate for B with dimensions (p, k = khat)
B2 <- coef(cve.obj.s, k = khat)
# get projected X data (same as cve.obj.s$X \%*\% B2)
proj.X <- directions(cve.obj.s, k = khat)
# plot y against projected data
plot(proj.X[, 1], y)
plot(proj.X[, 2], y)
# creat 10 new x points and y according to model
x.new <- matrix(rnorm(10 * p), 10, p)
y.new <- (x.new \%*\% b1)^2 + 2 * (x.new \%*\% b2) + 0.25 * rnorm(10)
# predict y.new
yhat <- predict(cve.obj.s, x.new, khat)
plot(y.new, yhat)
# projection matrix on span(B)
# same as B \%*\% t(B) since B is semi-orthogonal
PB <- B \%*\% solve(t(B) \%*\% B) \%*\% t(B)
# cve estimates for B with simple and weighted method
B.s <- coef(cve.obj.s, k = 2)
B.w <- coef(cve.obj.w, k = 2)
# same as B.s \%*\% t(B.s) since B.s is semi-orthogonal (same vor B.w)
PB.s <- B.s \%*\% solve(t(B.s) \%*\% B.s) \%*\% t(B.s)
PB.w <- B.w \%*\% solve(t(B.w) \%*\% B.w) \%*\% t(B.w)
# compare estimation accuracy of simple and weighted cve estimate by
# Frobenius norm of difference of projections.
norm(PB - PB.s, type = 'F')
norm(PB - PB.w, type = 'F')
} }
\references{ \references{

View File

@ -14,6 +14,13 @@ cve.call(X, Y, method = "simple", nObs = sqrt(nrow(X)), h = NULL,
\item{Y}{Responses (1 dimensional).} \item{Y}{Responses (1 dimensional).}
\item{method}{specifies the CVE method variation as one of
\itemize{
\item "simple" exact implementation as described in the paper listed
below.
\item "weighted" variation with addaptive weighting of slices.
}}
\item{nObs}{parameter for choosing bandwidth \code{h} using \item{nObs}{parameter for choosing bandwidth \code{h} using
\code{\link{estimate.bandwidth}} (ignored if \code{h} is supplied).} \code{\link{estimate.bandwidth}} (ignored if \code{h} is supplied).}
@ -39,7 +46,8 @@ optimizing.}
\item{gamma}{step-size reduction multiple.} \item{gamma}{step-size reduction multiple.}
\item{V.init}{Semi-orthogonal matrix of dimensions `(ncol(X), ncol(X) - k)` #' as optimization starting value. (If supplied, \code{attempts} is \item{V.init}{Semi-orthogonal matrix of dimensions `(ncol(X), ncol(X) - k)
as optimization starting value. (If supplied, \code{attempts} is
set to 1 and \code{k} to match dimension)} set to 1 and \code{k} to match dimension)}
\item{max.iter}{maximum number of optimization steps.} \item{max.iter}{maximum number of optimization steps.}
@ -84,3 +92,27 @@ and \eqn{B = (b_1, ..., b_k)} is
a real \eqn{p \times k}{p x k} of rank \eqn{k <= p}{k \leq p}. a real \eqn{p \times k}{p x k} of rank \eqn{k <= p}{k \leq p}.
Without loss of generality \eqn{B} is assumed to be orthonormal. Without loss of generality \eqn{B} is assumed to be orthonormal.
} }
\examples{
# create B for simulation (k = 1)
B <- rep(1, 5) / sqrt(5)
set.seed(21)
# creat predictor data X ~ N(0, I_p)
X <- matrix(rnorm(500), 100, 5)
# simulate response variable
# Y = f(B'X) + err
# with f(x1) = x1 and err ~ N(0, 0.25^2)
Y <- X \%*\% B + 0.25 * rnorm(100)
# calculate cve with method 'simple' for k = 1
set.seed(21)
cve.obj.simple1 <- cve(Y ~ X, k = 1)
# same as
set.seed(21)
cve.obj.simple2 <- cve.call(X, Y, k = 1)
# extract estimated B's.
coef(cve.obj.simple1, k = 1)
coef(cve.obj.simple2, k = 1)
}

View File

@ -15,3 +15,22 @@
\description{ \description{
Computes projected training data \code{X} for given dimension `k`. Computes projected training data \code{X} for given dimension `k`.
} }
\examples{
# create B for simulation (k = 1)
B <- rep(1, 5) / sqrt(5)
set.seed(21)
# creat predictor data x ~ N(0, I_p)
x <- matrix(rnorm(500), 100, 5)
# simulate response variable
# y = f(B'x) + err
# with f(x1) = x1 and err ~ N(0, 0.25^2)
y <- x \%*\% B + 0.25 * rnorm(100)
# calculate cve with method 'simple' for k = 1
set.seed(21)
cve.obj.simple <- cve(y ~ x, k = 1, method = 'simple')
# get projected data for k = 1
x.proj <- directions(cve.obj.simple, k = 1)
# plot y against projected data
plot(x.proj, y)
}

View File

@ -25,3 +25,23 @@ with \eqn{n} the sample size, \eqn{p} its dimension
(\code{n <- nrow(X); p <- ncol(X)}) and the covariance-matrix \eqn{\Sigma} (\code{n <- nrow(X); p <- ncol(X)}) and the covariance-matrix \eqn{\Sigma}
which is \code{(n-1)/n} times the sample covariance estimate. which is \code{(n-1)/n} times the sample covariance estimate.
} }
\examples{
# set dimensions for simulation model
p <- 5; k <- 1
# create B for simulation
B <- rep(1, p) / sqrt(p)
# samplsize
n <- 100
set.seed(21)
#creat predictor data x ~ N(0, I_p)
x <- matrix(rnorm(n * p), n, p)
# simulate response variable
# y = f(B'x) + err
# with f(x1) = x1 and err ~ N(0, 0.25^2)
y <- x \%*\% B + 0.25 * rnorm(100)
# calculate cve with method 'simple' for k = 1
set.seed(21)
cve.obj.simple <- cve(y ~ x, k = k)
print(cve.obj.simple$res$'1'$h)
print(estimate.bandwidth(x, k = k))
}

View File

@ -14,6 +14,33 @@
} }
\description{ \description{
Boxplots of the loss from \code{min.dim} to \code{max.dim} \code{k} values. Boxplots of the loss from \code{min.dim} to \code{max.dim} \code{k} values.
}
\examples{
# create B for simulation
B <- cbind(rep(1, 6), (-1)^seq(6)) / sqrt(6)
set.seed(21)
# creat predictor data x ~ N(0, I_p)
X <- matrix(rnorm(600), 100)
# simulate response variable
# y = f(B'x) + err
# with f(x1, x2) = x1^2 + 2 x2 and err ~ N(0, 0.25^2)
Y <- (X \%*\% B[, 1])^2 + 2 * X \%*\% B[, 2] + rnorm(100, 0, .1)
# Create bandwidth estimation function
estimate.bandwidth <- function(X, k, nObs) {
n <- nrow(X)
p <- ncol(X)
X_c <- scale(X, center = TRUE, scale = FALSE)
2 * qchisq((nObs - 1) / (n - 1), k) * sum(X_c^2) / (n * p)
}
# calculate cve with method 'simple' for k = min.dim,...,max.dim
cve.obj.simple <- cve(Y ~ X, h = estimate.bandwidth, nObs = sqrt(nrow(X)))
# elbow plot
plot(cve.obj.simple)
} }
\seealso{ \seealso{
see \code{\link{par}} for graphical parameters to pass through see \code{\link{par}} for graphical parameters to pass through

View File

@ -22,6 +22,33 @@ prediced response of data \code{newdata}.
\description{ \description{
Predict responces using reduced data with \code{\link{mars}}. Predict responces using reduced data with \code{\link{mars}}.
} }
\examples{
# create B for simulation
B <- rep(1, 5) / sqrt(5)
set.seed(21)
# creat predictor data x ~ N(0, I_p)
x <- matrix(rnorm(500), 100)
# simulate response variable
# y = f(B'x) + err
# with f(x1) = x1 and err ~ N(0, 0.25^2)
y <- x \%*\% B + 0.25 * rnorm(100)
x.train <- x[1:80, ]
x.test <- x[81:100, ]
y.train <- y[1:80, ]
y.test <- y[81:100, ]
# calculate cve with method 'simple' for k = 1
cve.obj.simple <- cve(y.train ~ x.train, k = 1)
# predict y.test from x.test
yhat <- predict(cve.obj.simple, x.test, 1)
# plot prediction against y.test
plot(yhat, y.test)
}
\seealso{ \seealso{
\code{\link{cve}}, \code{\link{cve.call}} or \pkg{\link{mars}}. \code{\link{cve}}, \code{\link{cve.call}} or \pkg{\link{mars}}.
} }

View File

@ -1,24 +0,0 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/predict_dim.R
\name{predict.dim}
\alias{predict.dim}
\title{Predicts SDR dimension using \code{\link[mda]{mars}} via a Cross-Validation.}
\usage{
predict.dim(object, ...)
}
\arguments{
\item{object}{instance of class \code{cve} (result of \code{cve},
\code{cve.call}).}
\item{...}{ignored.}
}
\value{
list with
\itemize{
\item MSE: Mean Square Error,
\item k: predicted dimensions.
}
}
\description{
Predicts SDR dimension using \code{\link[mda]{mars}} via a Cross-Validation.
}

View File

@ -14,3 +14,22 @@
\description{ \description{
Prints a summary of a \code{cve} result. Prints a summary of a \code{cve} result.
} }
\examples{
# create B for simulation
B <- rep(1, 5) / sqrt(5)
set.seed(21)
#creat predictor data x ~ N(0, I_p)
x <- matrix(rnorm(500), 100)
# simulate response variable
# y = f(B'x) + err
# with f(x1) = x1 and err ~ N(0, 0.25^2)
y <- x \%*\% B + 0.25 * rnorm(100)
# calculate cve for unknown k between min.dim and max.dim.
cve.obj.simple <- cve(y ~ x)
summary(cve.obj.simple)
}

View File

@ -13,22 +13,18 @@
* *
* @param logger Pointer to a SEXP R object representing an R function. * @param logger Pointer to a SEXP R object representing an R function.
* @param env Pointer to a SEXP R object representing an R environment. * @param env Pointer to a SEXP R object representing an R environment.
* @param attempt counter of attempts.
* @param iter optimization iteration counter.
* @param L Pointer to a SEXP R object representing an R environment. * @param L Pointer to a SEXP R object representing an R environment.
* @param V Pointer memory area of size `nrowV * ncolV` storing `V`. * @param V Pointer memory area of size `nrowV * ncolV` storing `V`.
* @param nrowV Nr. of rows of `V`.
* @param ncolV Nr. of columns of `V`.
* @param G Pointer memory area of size `nrowG * ncolG` storing `G`. * @param G Pointer memory area of size `nrowG * ncolG` storing `G`.
* @param nrowG Nr. of rows of `G`.
* @param ncolG Nr. of columns of `G`.
* @param loss Current loss L(V). * @param loss Current loss L(V).
* @param err Errof for break condition (0.0 befor first iteration). * @param err Errof for break condition (0.0 befor first iteration).
* @param tau Current step-size. * @param tau Current step-size.
*/ */
void callLogger(SEXP logger, SEXP env, void callLogger(SEXP logger, SEXP env,
const int attempt, const int iter, const int attempt, const int iter,
const double* L, const int lenL, const mat* L, const mat* V, const mat* G,
const double* V, const int nrowV, const int ncolV,
const double* G, const int nrowG, const int ncolG,
const double loss, const double err, const double tau) { const double loss, const double err, const double tau) {
/* Create R objects to be passed to R logger function. */ /* Create R objects to be passed to R logger function. */
// Attempt is converted from 0-indexed to 1-indexed as R index. // Attempt is converted from 0-indexed to 1-indexed as R index.
@ -36,13 +32,13 @@ void callLogger(SEXP logger, SEXP env,
SEXP r_iter = PROTECT(ScalarInteger(iter + 1)); SEXP r_iter = PROTECT(ScalarInteger(iter + 1));
/* Create R representations of L, V and G */ /* Create R representations of L, V and G */
SEXP r_L = PROTECT(allocVector(REALSXP, lenL)); SEXP r_L = PROTECT(allocVector(REALSXP, L->nrow));
SEXP r_V = PROTECT(allocMatrix(REALSXP, nrowV, ncolV)); SEXP r_V = PROTECT(allocMatrix(REALSXP, V->nrow, V->ncol));
SEXP r_G = PROTECT(allocMatrix(REALSXP, nrowG, ncolG)); SEXP r_G = PROTECT(allocMatrix(REALSXP, G->nrow, G->ncol));
/* Copy data to R objects */ /* Copy data to R objects */
memcpy(REAL(r_L), L, lenL * sizeof(double)); memcpy(REAL(r_L), L->elem, L->nrow * sizeof(double));
memcpy(REAL(r_V), V, nrowV * ncolV * sizeof(double)); memcpy(REAL(r_V), V->elem, V->nrow * V->ncol * sizeof(double));
memcpy(REAL(r_G), G, nrowG * ncolG * sizeof(double)); memcpy(REAL(r_G), G->elem, G->nrow * G->ncol * sizeof(double));
/* Build data list passed to logger */ /* Build data list passed to logger */
SEXP data = PROTECT(allocVector(VECSXP, 6)); SEXP data = PROTECT(allocVector(VECSXP, 6));

View File

@ -2,121 +2,113 @@
#include "cve.h" #include "cve.h"
// TODO: clarify void cve(const mat *X, const mat *Y, const double h,
static inline double gaussKernel(const double x, const double scale) { const unsigned int method,
return exp(scale * x * x); const double momentum,
} const double tau_init, const double tol_init,
const double slack, const double gamma,
const int maxIter, const int attempts,
mat *V, mat *L,
SEXP logger, SEXP loggerEnv) {
void cve_sub(const int n, const int p, const int q, // TODO: param and dim. validation.
const double *X, const double *Y, const double h, int n = X->nrow, p = X->ncol, q = V->ncol;
const unsigned int method, int attempt = 0, iter;
const double momentum,
const double tau_init, const double tol_init,
const double slack, const double gamma,
const int maxIter, const int attempts,
double *V, double *L,
SEXP logger, SEXP loggerEnv) {
int attempt = 0, iter, i, nn = (n * (n - 1)) / 2;
double loss, loss_last, loss_best, err, tau; double loss, loss_last, loss_best, err, tau;
double tol = tol_init * sqrt((double)(2 * q)); double tol = tol_init * sqrt((double)(2 * q));
double gKscale = -0.5 / (h * h);
double agility = -2.0 * (1.0 - momentum) / (h * h); double agility = -2.0 * (1.0 - momentum) / (h * h);
double c = agility / (double)n; double c = agility / (double)n;
// TODO: check parameters! dim, ...
/* Create further intermediate or internal variables. */ /* Create further intermediate or internal variables. */
double *Q = (double*)R_alloc(p * p, sizeof(double)); mat *lvecD_e = (void*)0;
double *V_best = (double*)R_alloc(p * q, sizeof(double)); mat *Ysquared = (void*)0;
double *L_best = (double*)R_alloc(n, sizeof(double)); mat *XV = (void*)0;
double *V_tau = (double*)R_alloc(p * q, sizeof(double)); mat *lvecD = (void*)0; // TODO: combine. aka in-place lvecToSym
double *X_diff = (double*)R_alloc(nn * p, sizeof(double)); mat *D = (void*)0; // TODO: combine. aka in-place lvecToSym
double *X_proj = (double*)R_alloc(nn * p, sizeof(double)); mat *lvecK = (void*)0; // TODO: combine. aka in-place lvecToSym
double *y1 = (double*)R_alloc(n, sizeof(double)); mat *K = (void*)0; // TODO: combine. aka in-place lvecToSym
double *vecD = (double*)R_alloc(nn, sizeof(double)); mat *colSumsK = (void*)0;
double *vecK = (double*)R_alloc(nn, sizeof(double)); mat *W = (void*)0;
double *vecS = (double*)R_alloc(nn, sizeof(double)); mat *y1 = (void*)0;
double *colSums = (double*)R_alloc(n, sizeof(double)); mat *y2 = (void*)0;
double *G = (double*)R_alloc(p * q, sizeof(double)); mat *S = (void*)0;
double *A = (double*)R_alloc(p * p, sizeof(double)); mat *tmp1 = (void*)0;
mat *tmp2 = (void*)0;
mat *G = (void*)0;
mat *A = (void*)0;
mat *V_tau = (void*)0;
mat *V_best = (void*)0;
mat *L_best = (void*)0;
double *V_init = (void*)0; /* Allocate appropiate amount of working memory. */
if (attempts < 1) { int workLen = 2 * (p + 1) * p;
V_init = (double*)R_alloc(p * q, sizeof(double)); if (workLen < n) {
memcpy(V_init, V, p * q * sizeof(double)); workLen = n;
} }
/* Determine size of working memory used by subroutines. */
const int workLen = getWorkLen(n, p, q);
double *workMem = (double*)R_alloc(workLen, sizeof(double)); double *workMem = (double*)R_alloc(workLen, sizeof(double));
/* Compute X_diff, this is static for the entire algorithm. */ lvecD_e = rowDiffSquareSums(X, lvecD_e);
rowDiffs(X, n, p, X_diff); Ysquared = hadamard(1.0, Y, Y, 0.0, Ysquared);
do { do {
/* (Re)set learning rate. */ /* (Re)set learning rate. */
tau = tau_init; tau = tau_init;
/* Check if start value for `V` was supplied. */ /* Check if start value for `V` was supplied. */
if (V_init == (void*)0) { if (attempts > 0) {
/* Sample start value from stiefel manifold. */ /* Sample start value from stiefel manifold. */
rStiefel(p, q, V, workMem, workLen); V = rStiefel(p, q, V, workMem);
} else {
/* (Re)Set start value of `V` to `V_init`. */
memcpy(V, V_init, p * q * sizeof(double));
} }
/* Create projection matrix `Q <- I - V V^T` for initial `V`. */ /* Embed X_i's in V space */
nullProj(V, p, q, Q); XV = matrixprod(1.0, X, V, 0.0, XV);
/* Compute embedded distances */
/* Compute Distance vector. */ lvecD = lincomb(1.0, lvecD_e, -1.0, rowDiffSquareSums(XV, lvecD));
matrixprod(X, n, p, Q, p, p, X_proj); // here X_proj is only `(n, p)`.
rowDiffSquareSums(X_proj, n, p, vecD);
/* Apply kernel to distances. */ /* Apply kernel to distances. */
for (i = 0; i < nn; ++i) { lvecK = applyKernel(lvecD, h, gauss, lvecK);
vecK[i] = gaussKernel(vecD[i], gKscale); /* Transform lower vectors lvecD, lvecK into sym. matrices. */
D = lvecToSym(lvecD, 0.0, D);
K = lvecToSym(lvecK, 1.0, K);
/* Compute column sums of kernel matrix K */
colSumsK = colSums(K, colSumsK);
/* Normalize K columns to obtain weight matrix W */
W = colApply(K, '/', colSumsK, W);
/* first and second order weighted responces */
y1 = matrixprod(1.0, W, Y, 0.0, y1);
y2 = matrixprod(1.0, W, Ysquared, 0.0, y2);
/* Compute losses */
L = hadamard(-1.0, y1, y1, 1.0, copy(y2, L));
/* Compute initial loss */
if (method == simple) {
loss_last = mean(L);
/* Calculate the scaling matrix S */
S = laplace(adjacence(L, Y, y1, D, W, gauss, S), workMem);
} else if (method == weighted) {
colSumsK = elemApply(colSumsK, '-', 1.0, colSumsK);
loss_last = dot(L, '/', colSumsK);
c = agility / sum(colSumsK);
/* Calculate the scaling matrix S */
S = laplace(adjacence(L, Y, y1, D, K, gauss, S), workMem);
} else {
// TODO: error handling!
} }
/* Gradient */
/* Compute col(row) sums of kernal vector (sym. packed lower tri tmp1 = matrixprod(1.0, S, X, 0.0, tmp1);
* matrix.), because `K == K^T` the rowSums are equal to colSums. */ tmp2 = crossprod(1.0, X, tmp1, 0.0, tmp2);
rowSumsSymVec(vecK, n, 1.0, colSums); G = matrixprod(c, tmp2, V, 0.0, G);
/* Compute loss given the kernel vector and its column sums.
* Additionally the first momentum `y1` is computed and stored in
* the working memory (only intermidiate result, needed for `vecS`). */
loss_last = cost(method, n, Y, vecK, colSums, y1, L);
/* Calc the scaling vector used for final computation of grad. */
scaling(method, n, Y, y1, L, vecD, vecK, colSums, vecS);
/* Compute the eucledian gradient `G`. */
rowSweep(X_diff, nn, p, "*", vecS, X_proj);
crossprod(X_diff, nn, p, X_proj, nn, p, workMem);
matrixprod(workMem, p, p, V, p, q, G);
if (method == CVE_METHOD_WEIGHTED) {
/* Compute summ of all kernel applied distances by summing the
* colSums of the kernel matrix. */
// c = -(double)n; // to scale with sum(K) - n
// for (i = 0; i < n; ++i) {
// c += colSums[i];
// }
// TODO: check for division by zero, but should not happen!!!
c = agility / (sum(colSums, n) - (double)n);
}
scale(c, G, p * q); // in-place
if (logger) { if (logger) {
callLogger(logger, loggerEnv, callLogger(logger, loggerEnv,
attempt, /* iter <- 0L */ -1, attempt, /* iter <- 0L */ -1,
L, n, L, V, G,
V, p, q,
G, p, q,
loss_last, /* err <- NA */ -1.0, tau); loss_last, /* err <- NA */ -1.0, tau);
} }
/* Compute Skew-Symmetric matrix `A` used in Cayley transform. /* Compute Skew-Symmetric matrix `A` used in Cayley transform.
* `A <- tau * (G V^T - V G^T) + 0 * A`*/ * `A <- tau * (G V^T - V G^T) + 0 * A`*/
skew(p, q, tau, G, V, 0.0, A); A = skew(tau, G, V, 0.0, A);
for (iter = 0; iter < maxIter; ++iter) { for (iter = 0; iter < maxIter; ++iter) {
/* Before Starting next iteration check if the Uer has requested an /* Before Starting next iteration check if the Uer has requested an
@ -126,50 +118,57 @@ void cve_sub(const int n, const int p, const int q,
R_CheckUserInterrupt(); R_CheckUserInterrupt();
/* Move `V` along the gradient direction. */ /* Move `V` along the gradient direction. */
cayleyTransform(p, q, A, V, V_tau, workMem); V_tau = cayleyTransform(A, V, V_tau, workMem);
/* Create projection matrix for `V_tau`. */ // Rprintf("Start attempt(%2d), iter (%2d): err: %f, loss: %f, tau: %f\n",
nullProj(V_tau, p, q, Q); // attempt, iter, dist(V, V_tau), loss_last, tau);
/* Compute Distance vector. */
matrixprod(X, n, p, Q, p, p, X_proj); // here X_proj only `(n, p)`.
rowDiffSquareSums(X_proj, n, p, vecD);
/* Embed X_i's in V space */
XV = matrixprod(1.0, X, V_tau, 0.0, XV);
/* Compute embedded distances */
lvecD = lincomb(1.0, lvecD_e, -1.0, rowDiffSquareSums(XV, lvecD));
/* Apply kernel to distances. */ /* Apply kernel to distances. */
for (i = 0; i < nn; ++i) { lvecK = applyKernel(lvecD, h, gauss, lvecK);
vecK[i] = gaussKernel(vecD[i], gKscale); /* Transform lower vectors lvecD, lvecK into sym. matrices. */
D = lvecToSym(lvecD, 0.0, D);
K = lvecToSym(lvecK, 1.0, K);
/* Compute column sums of kernel matrix K */
colSumsK = colSums(K, colSumsK);
/* Normalize K columns to obtain weight matrix W */
W = colApply(K, '/', colSumsK, W);
/* first and second order weighted responces */
y1 = matrixprod(1.0, W, Y, 0.0, y1);
y2 = matrixprod(1.0, W, Ysquared, 0.0, y2);
/* Compute losses */
L = hadamard(-1.0, y1, y1, 1.0, copy(y2, L));
/* Compute loss */
if (method == simple) {
loss = mean(L);
} else if (method == weighted) {
colSumsK = elemApply(colSumsK, '-', 1.0, colSumsK);
loss = dot(L, '/', colSumsK);
} else {
// TODO: error handling!
} }
/* Compute col(row) sums of kernal vector (sym. packed lower tri
* matrix.), because `K == K^T` the rowSums are equal to colSums. */
rowSumsSymVec(vecK, n, 1.0, colSums);
/* Compute loss given the kernel vector and its column sums.
* Additionally the first momentum `y1` is computed and stored in
* the working memory (only intermidiate result, needed for vecS).*/
loss = cost(method, n, Y, vecK, colSums, y1, L);
/* Check if step is appropriate, iff not reduce learning rate. */ /* Check if step is appropriate, iff not reduce learning rate. */
if ((loss - loss_last) > loss_last * slack) { if ((loss - loss_last) > loss_last * slack) {
tau *= gamma; tau *= gamma;
scale(gamma, A, p * p); A = elemApply(A, '*', gamma, A); // scale A by gamma
continue; continue;
} }
/* Compute error, use workMem (keep first `n`, they store `y1`). */ /* Compute error, use workMem. */
skew(p, q, 1.0, V, V_tau, 0.0, workMem); err = dist(V, V_tau);
err = norm(workMem, p, p, "F");
/* Shift next step to current step and store loss to last. */ /* Shift next step to current step and store loss to last. */
memcpy(V, V_tau, p * q * sizeof(double)); V = copy(V_tau, V);
loss_last = loss; loss_last = loss;
if (logger) { if (logger) {
callLogger(logger, loggerEnv, callLogger(logger, loggerEnv,
attempt, iter, attempt, iter,
L, n, L, V, G,
V, p, q,
G, p, q,
loss, err, tau); loss, err, tau);
} }
@ -178,41 +177,35 @@ void cve_sub(const int n, const int p, const int q,
break; break;
} }
/* Continue computing the gradient. */ if (method == simple) {
/* Calc the scaling vector used for final computation of grad. */ /* Calculate the scaling matrix S */
scaling(method, n, Y, y1, L, vecD, vecK, colSums, vecS); S = laplace(adjacence(L, Y, y1, D, W, gauss, S), workMem);
} else if (method == weighted) {
/* Compute the eucledian gradient `G`. */ /* Calculate the scaling matrix S */
rowSweep(X_diff, nn, p, "*", vecS, X_proj); S = laplace(adjacence(L, Y, y1, D, K, gauss, S), workMem);
crossprod(X_diff, nn, p, X_proj, nn, p, workMem); c = agility / sum(colSumsK);
// /* Update without momentum */ } else {
// matrixprod(workMem, p, p, V, p, q, G); // TODO: error handling!
// scale(-2. / (((double)n) * h * h), G, p * q); // in-place
/* G <- momentum * G + agility * workMem V */
if (method == CVE_METHOD_WEIGHTED) {
/* Compute summ of all kernel applied distances by summing the
* colSums of the kernel matrix. */
// TODO: check for division by zero, but should not happen!!!
c = agility / (sum(colSums, n) - (double)n);
} }
F77_NAME(dgemm)("N", "N", &p, &q, &p,
&c, workMem, &p, V, &p, /* Gradient */
&momentum, G, &p); tmp1 = matrixprod(1.0, S, X, 0.0, tmp1);
tmp2 = crossprod(1.0, X, tmp1, 0.0, tmp2);
G = matrixprod(c, tmp2, V, momentum, G);
/* Compute Skew-Symmetric matrix `A` used in Cayley transform. /* Compute Skew-Symmetric matrix `A` used in Cayley transform.
* `A <- tau * (G V^T - V G^T) + 0 * A`*/ * `A <- tau * (G V^T - V G^T) + 0 * A`*/
skew(p, q, tau, G, V, 0.0, A); A = skew(tau, G, V, 0.0, A);
} }
/* Check if current attempt improved previous ones */ /* Check if current attempt improved previous ones */
if (attempt == 0 || loss < loss_best) { if (attempt == 0 || loss < loss_best) {
loss_best = loss; loss_best = loss;
memcpy(V_best, V, p * q * sizeof(double)); V_best = copy(V, V_best);
memcpy(L_best, L, n * sizeof(double)); L_best = copy(L, L_best);
} }
} while (++attempt < attempts); } while (++attempt < attempts);
memcpy(V, V_best, p * q * sizeof(double)); V = copy(V_best, V);
memcpy(L, L_best, n * sizeof(double)); L = copy(L_best, L);
} }

View File

@ -12,107 +12,90 @@
#define CVE_MEM_CHUNK_SIZE 2032 #define CVE_MEM_CHUNK_SIZE 2032
#define CVE_MEM_CHUNK_SMALL 1016 #define CVE_MEM_CHUNK_SMALL 1016
#define BLOCK_SIZE 8
/* Bis masks for method types */ /**
#define CVE_METHOD_WEIGHTED 1 * @struct Matrix of dimensions `nrow x ncol`.
*/
typedef struct matrix {
int nrow; /**< Number of rows */
int ncol; /**< Number of columns */
void *origin; /**< Reference to origin, see `asMat()`. */
double *elem; /**< Column-major array of matrix elements. */
} mat;
// typedef struct { typedef enum {
// unsigned int nrow; simple,
// unsigned int ncol; weighted
// unsigned int memsize; } method;
// double *data;
// } mat;
// mat* Matrix(const unsigned int nrow, const unsigned int ncol); typedef enum {
gauss
} kernel;
void cve_sub(const int n, const int p, const int q,
const double *X, const double *Y, const double h, void cve(const mat *X, const mat *Y, const double h,
const unsigned int method, const unsigned int method,
const double momentum, const double momentum,
const double tau_init, const double tol_init, const double tau_init, const double tol_init,
const double slack, const double gamma, const double slack, const double gamma,
const int maxIter, int attempts, const int maxIter, const int attempts,
double *V, double *L, mat *V, mat *L,
SEXP logger, SEXP loggerEnv); SEXP logger, SEXP loggerEnv);
void callLogger(SEXP logger, SEXP env, void callLogger(SEXP logger, SEXP env,
const int attempt, const int epoch, const int attempt, const int iter,
const double* L, const int lenL, const mat* L, const mat* V, const mat* G,
const double* V, const int nrowV, const int ncolV,
const double* G, const int nrowG, const int ncolG,
const double loss, const double err, const double tau); const double loss, const double err, const double tau);
/* CVE sub-routines */ /******************************************************************************/
int getWorkLen(const int n, const int p, const int q); /** rStiefel.c **/
double cost(const unsigned int method, /******************************************************************************/
const int n, /* Random element from Stiefel manifold. */
const double *Y, mat* rStiefel(const int p, const int q, mat *V, double *workMem);
const double *vecK,
const double *colSums,
double *y1, double *L);
void scaling(const unsigned int method,
const int n,
const double *Y, const double *y1, const double *L,
const double *vecD, const double *vecK,
const double *colSums,
double *vecS);
/* rStiefel */ /******************************************************************************/
void rStiefel(const int p, const int q, double *V, /** matrix.c **/
double *workMem, int workLen); /******************************************************************************/
/* Create and Copy matrices */
mat* matrix(const int nrow, const int ncol);
mat* zero(const int nrow, const int ncol);
mat* copy(mat *src, mat *dest);
/* Matrix to scalar */
double sum(const mat *A);
double mean(const mat *A);
double squareSum(const mat* A);
double dot(const mat *A, const char op, const mat *B);
double dist(const mat *A, const mat *B);
/* Matrix to vector (`ncol == 1` matrices, aka row vectors) */
mat* rowSums(const mat *A, mat *sums);
mat* colSums(const mat *A, mat *sums);
mat* rowDiffSquareSums(const mat *X, mat *lvecD);
/* Matrix and scalar to Matrix */
mat* elemApply(mat *A, const char op, const double scalar, mat *B);
/* Matrix and vector to Matrix */
mat* colApply(mat *A, const char op, mat *B, mat *C);
/* Matrix and Matrix to Matrix */
mat* lincomb(const double alpha, const mat *A, const double beta, mat *B);
mat* matrixprod(const double alpha, const mat *A, const mat *B,
double beta, mat* C);
mat* crossprod(const double alpha, const mat *A, const mat *B,
double beta, mat* C);
mat* hadamard(const double alpha, const mat* A, const mat *B,
double beta, mat* C);
mat* skew(const double alpha, mat* A, mat *B, double beta, mat* C);
/* Matrix Transformations */
mat* cayleyTransform(mat *A, mat *B, mat *C, double *workMem);
mat* laplace(mat *A, double *workMem);
mat* lvecToSym(const mat* A, const double diag, mat* B);
/* MATRIX */ /******************************************************************************/
double sum(const double *A, const int nelem); /** cve_subroutines.c **/
/******************************************************************************/
double norm(const double *A, const int nrow, const int ncol, /* CVE specific sub-routines */
const char *type); mat* adjacence(const mat *vec_L, const mat *vec_Y, const mat *vec_y1,
const mat *mat_D, const mat *mat_W, kernel kernel,
void matrixprod(const double *A, const int nrowA, const int ncolA, mat *mat_S);
const double *B, const int nrowB, const int ncolB, mat* applyKernel(const mat* A, const double h, kernel kernel, mat* B);
double *C);
void crossprod(const double *A, const int nrowA, const int ncolA,
const double *B, const int nrowB, const int ncolB,
double *C);
void skew(const int nrow, const int ncol,
double alpha, const double *A, const double *B,
double beta,
double *C);
void nullProj(const double *B, const int nrowB, const int ncolB,
double *Q);
void scale(const double s, double *A, const int nelem);
void cayleyTransform(const int p, const int q,
const double *A, const double *B,
double *X, double *workMem);
/* Row and column opperations. */
void rowSums(const double *A, const int nrow, const int ncol,
double *sum);
void colSums(const double *A, const int nrow, const int ncol,
double *sum);
void rowSquareSums(const double *A, const int nrow, const int ncol,
double *sum);
void rowSumsSymVec(const double *Avec, const int nrow,
const double diag,
double *sum);
void rowDiffs(const double* X, const int nrow, const int ncol,
double *diffs);
void rowDiffSquareSums(const double* X, const int nrow, const int ncol,
double *sum);
/* SWEEP */
void rowSweep(const double *A, const int nrow, const int ncol,
const char* op,
const double *v, // vector of length nrow
double *C);
#endif /* CVE_INCLUDE_GUARD_H_ */ #endif /* CVE_INCLUDE_GUARD_H_ */

View File

@ -1,95 +1,257 @@
#include "cve.h" #include "cve.h"
int getWorkLen(const int n, const int p, const int q) { /**
int mpq; /**< Max of p and q */ * Applies the requested kernel element-wise.
int nn = ((n - 1) * n) / 2; *
* @param A matrix to apply the kernel to.
* @param h bandwidth parameter.
* @param kernel the kernel to be used.
* @param B (in/out) matrix `A` with element-wise applied kernel.
*
* @returns ether the passed `B`, or a new created matrix if `B` was NULL.
*/
mat* applyKernel(const mat* A, const double h, kernel kernel, mat* B) {
int i, nn = A->nrow * A->ncol;
int nn4 = 4 * (nn / 4);
double scale;
const double * restrict a;
double * restrict b;
if (p > q) { if (!B) {
mpq = p; B = matrix(A->nrow, A->ncol);
} else { } else if (nn != B->nrow * B->ncol) {
mpq = q; // TODO: error handling!
} }
if (nn * p < (mpq + 1) * mpq) {
return 2 * (mpq + 1) * mpq; a = A->elem;
} else { b = B->elem;
return (nn + mpq) * mpq; switch (kernel) {
case gauss:
scale = -0.5 / (h * h);
for (i = 0; i < nn4; i += 4) {
b[i] = exp(scale * a[i] * a[i]);
b[i + 1] = exp(scale * a[i + 1] * a[i + 1]);
b[i + 2] = exp(scale * a[i + 2] * a[i + 2]);
b[i + 3] = exp(scale * a[i + 3] * a[i + 3]);
}
for (; i < nn; ++i) {
b[i] = exp(scale * a[i] * a[i]);
}
break;
default:
// TODO: error handling!
break;
} }
return B;
} }
double cost(const unsigned int method, /**
const int n, * Scaling matrix `S` defined as
const double *Y, * s_{i j} = (L_i - (Y_j - y1_i)^2) * d_{i j} * w_{i j}
const double *vecK, *
const double *colSums, * Mapping of vectors `L`, `y1` and `Y` combinations.
double *y1, double *L) { *
int i, j, k; * Y[j]
double tmp, sum; * ------ j ----->
* s[0] s[n] . . . s[jn] . . . s[(j-1)n]
* s[1] s[n+1] . . . s[jn+1] . . . s[(j-1)n+1]
* | . . . . . .
* | . . . . . .
* . . . . . .
* L[i], y1[i] i s[i] s[n+i] . . . s[jn+i] . . . s[(j-1)n+i]
* . . . . . .
* | . . . . . .
* v . . . . . .
* s[n-1] s[2n-1] . . . s[n-1] . . . s[nn-1]
*
* @param L per sample loss vector of (lenght `n`).
* @param Y responces (lenght `n`).
* @param y1 weighted responces (lenght `n`).
* @param D distance matrix (dim. `n x n`).
* @param W weight matrix (dim. `n x n`).
* @param kernel the kernel to be used.
*
* @returns passed matrix `S` if not NULL, then a new `n x n` matrix is created.
*
* @example Basically equivalent to the following R function.
* r_LS <- function(L, Y, y1, D, W) {
* # get dimension
* n <- length(L)
* # Indices
* i <- rep(1:n, n)
* j <- rep(1:n, each = n)
* # Compute S
* matrix(L[i] - (Y[j] - y1[i])^2, n) * W * D
* }
*
* @details mapping for indices used in blocked implementation.
*
* n ..... Dimensions of `S`, a `n x n` matrix.
* B ..... BLOCK_SIZE
* rB .... block reminder, aka rB = B % n.
*
* Y[j]
* 0 ----- j -----> n
* 0 +--------------------+
* | ' |
* ' | k B x n |
* ' | v |
* ' +--------------------+
* L[i], y1[i] i | ' |
* ' | k B x n |
* ' | v |
* v +--------------------+
* | k rB x n |
* n +--------------------+
*/
// TODO: fix: cache misses in Y?!
mat* adjacence(const mat *vec_L, const mat *vec_Y, const mat *vec_y1,
const mat *mat_D, const mat *mat_W, kernel kernel,
mat *mat_S) {
int i, j, k, n = vec_L->nrow;
int block_size, block_batch_size;
int max_size = 64 < n ? 64 : n; // Block Size set to 64
for (i = 0; i < n; ++i) { double Y_j, tmp0, tmp1, tmp2, tmp3;
y1[i] = Y[i]; double *Y = vec_Y->elem;
L[i] = Y[i] * Y[i]; double *L = vec_L->elem;
double *y1 = vec_y1->elem;
double *D, *W, *S;
// TODO: Check dims.
if (!mat_S) {
mat_S = matrix(n, n);
} }
for (k = j = 0; j < n; ++j) { for (i = 0; i < n; i += block_size) {
for (i = j + 1; i < n; ++i, ++k) { /* Set blocks (left upper corner) */
y1[i] += Y[j] * vecK[k]; S = mat_S->elem + i;
y1[j] += Y[i] * vecK[k]; D = mat_D->elem + i;
L[i] += Y[j] * Y[j] * vecK[k]; W = mat_W->elem + i;
L[j] += Y[i] * Y[i] * vecK[k]; /* determine block size */
block_size = n - i;
if (block_size > max_size) {
block_size = max_size;
} }
} block_batch_size = 4 * (block_size / 4);
/* for each column in the block */
for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j, S += n, D += n, W += n) {
y1[i] /= colSums[i]; Y_j = Y[j];
L[i] /= colSums[i]; /* iterate over block rows */
} for (k = 0; k < block_batch_size; k += 4) {
tmp0 = Y_j - y1[k];
tmp = 0.0; tmp1 = Y_j - y1[k + 1];
if (method == CVE_METHOD_WEIGHTED) { tmp2 = Y_j - y1[k + 2];
sum = 0.0; tmp3 = Y_j - y1[k + 3];
for (i = 0; i < n; ++i) { S[k] = (L[k] - (tmp0 * tmp0)) * D[k] * W[k];
tmp += (colSums[i] - 1.0) * (L[i] -= y1[i] * y1[i]); S[k + 1] = (L[k + 1] - (tmp1 * tmp1)) * D[k + 1] * W[k + 1];
sum += colSums[i]; S[k + 2] = (L[k + 2] - (tmp2 * tmp2)) * D[k + 2] * W[k + 2];
} S[k + 3] = (L[k + 3] - (tmp3 * tmp3)) * D[k + 3] * W[k + 3];
return tmp / (sum - (double)n); // TODO: check for division by zero! }
} else { for (; k < block_size; ++k) {
for (i = 0; i < n; ++i) { tmp0 = Y_j - y1[k];
tmp += (L[i] -= y1[i] * y1[i]); S[k] = (L[k] - (tmp0 * tmp0)) * D[k] * W[k];
}
return tmp / (double)n;
}
}
void scaling(const unsigned int method,
const int n,
const double *Y, const double *y1, const double *L,
const double *vecD, const double *vecK,
const double *colSums,
double *vecS) {
int i, j, k, nn = (n * (n - 1)) / 2;
double tmp;
if (method == CVE_METHOD_WEIGHTED) {
for (k = j = 0; j < n; ++j) {
for (i = j + 1; i < n; ++i, ++k) {
tmp = Y[j] - y1[i];
vecS[k] = (L[i] - (tmp * tmp));
tmp = Y[i] - y1[j];
vecS[k] += (L[j] - (tmp * tmp));
}
}
} else {
for (k = j = 0; j < n; ++j) {
for (i = j + 1; i < n; ++i, ++k) {
tmp = Y[j] - y1[i];
vecS[k] = (L[i] - (tmp * tmp)) / colSums[i];
tmp = Y[i] - y1[j];
vecS[k] += (L[j] - (tmp * tmp)) / colSums[j];
} }
} }
L += block_size;
y1 += block_size;
} }
for (k = 0; k < nn; ++k) { return mat_S;
vecS[k] *= vecK[k] * vecD[k];
}
} }
// int getWorkLen(const int n, const int p, const int q) {
// int mpq; /**< Max of p and q */
// int nn = ((n - 1) * n) / 2;
// if (p > q) {
// mpq = p;
// } else {
// mpq = q;
// }
// if (nn * p < (mpq + 1) * mpq) {
// return 2 * (mpq + 1) * mpq;
// } else {
// return (nn + mpq) * mpq;
// }
// }
// double cost(const unsigned int method,
// const int n,
// const double *Y,
// const double *vecK,
// const double *colSums,
// double *y1, double *L) {
// int i, j, k;
// double tmp, sum;
// for (i = 0; i < n; ++i) {
// y1[i] = Y[i];
// L[i] = Y[i] * Y[i];
// }
// for (k = j = 0; j < n; ++j) {
// for (i = j + 1; i < n; ++i, ++k) {
// y1[i] += Y[j] * vecK[k];
// y1[j] += Y[i] * vecK[k];
// L[i] += Y[j] * Y[j] * vecK[k];
// L[j] += Y[i] * Y[i] * vecK[k];
// }
// }
// for (i = 0; i < n; ++i) {
// y1[i] /= colSums[i];
// L[i] /= colSums[i];
// }
// tmp = 0.0;
// if (method == CVE_METHOD_WEIGHTED) {
// sum = 0.0;
// for (i = 0; i < n; ++i) {
// tmp += (colSums[i] - 1.0) * (L[i] -= y1[i] * y1[i]);
// sum += colSums[i];
// }
// return tmp / (sum - (double)n); // TODO: check for division by zero!
// } else {
// for (i = 0; i < n; ++i) {
// tmp += (L[i] -= y1[i] * y1[i]);
// }
// return tmp / (double)n;
// }
// }
// void scaling(const unsigned int method,
// const int n,
// const double *Y, const double *y1, const double *L,
// const double *vecD, const double *vecK,
// const double *colSums,
// double *vecS) {
// int i, j, k, nn = (n * (n - 1)) / 2;
// double tmp;
// if (method == CVE_METHOD_WEIGHTED) {
// for (k = j = 0; j < n; ++j) {
// for (i = j + 1; i < n; ++i, ++k) {
// tmp = Y[j] - y1[i];
// vecS[k] = (L[i] - (tmp * tmp));
// tmp = Y[i] - y1[j];
// vecS[k] += (L[j] - (tmp * tmp));
// }
// }
// } else {
// for (k = j = 0; j < n; ++j) {
// for (i = j + 1; i < n; ++i, ++k) {
// tmp = Y[j] - y1[i];
// vecS[k] = (L[i] - (tmp * tmp)) / colSums[i];
// tmp = Y[i] - y1[j];
// vecS[k] += (L[j] - (tmp * tmp)) / colSums[j];
// }
// }
// }
// for (k = 0; k < nn; ++k) {
// vecS[k] *= vecK[k] * vecD[k];
// }
// }

View File

@ -1,27 +1,37 @@
#include "cve.h" #include "cve.h"
// SEXP rStiefel_c(SEXP pin, SEXP qin) { /**
// int p = asInteger(pin); * Converts a `SEXP` (S EXPression) into a matrix struct `mat`.
// int q = asInteger(qin); *
* @param S source struct to be converted.
*
* @details Reuses the memory area of the SEXP object, therefore manipulation
* of the returned matrix works in place of the SEXP object. In addition,
* a reference to the original SEXP is stored and will be retriefed from
* `asSEXP()` if the matrix was created through this function.
*/
static mat* asMat(SEXP S) {
// TODO: error checking and conversion
mat* M = (mat*)R_alloc(1, sizeof(mat));
if (isMatrix(S)) {
M->nrow = (int)nrows(S);
M->ncol = (int)ncols(S);
} else {
M->nrow = (int)length(S);
M->ncol = 1;
}
M->origin = S;
M->elem = REAL(S);
return M;
}
// SEXP Vout = PROTECT(allocMatrix(REALSXP, p, q)); SEXP cve_export(SEXP X, SEXP Y, SEXP k, SEXP h,
SEXP method,
// int workLen = 2 * (p + 1) * q; SEXP V, // initial
// double *workMem = (double*)R_alloc(workLen, sizeof(double)); SEXP momentum, SEXP tau, SEXP tol,
SEXP slack, SEXP gamma,
// rStiefel(p, q, REAL(Vout), workMem, workLen); SEXP maxIter, SEXP attempts,
SEXP logger, SEXP loggerEnv) {
// UNPROTECT(1);
// return Vout;
// }
SEXP cve(SEXP X, SEXP Y, SEXP k, SEXP h,
SEXP method,
SEXP V, // initial
SEXP momentum, SEXP tau, SEXP tol,
SEXP slack, SEXP gamma,
SEXP maxIter, SEXP attempts,
SEXP logger, SEXP loggerEnv) {
/* Handle logger parameter, set to NULL pointer if not a function. */ /* Handle logger parameter, set to NULL pointer if not a function. */
if (!(isFunction(logger) && isEnvironment(loggerEnv))) { if (!(isFunction(logger) && isEnvironment(loggerEnv))) {
logger = (void*)0; logger = (void*)0;
@ -42,20 +52,19 @@ SEXP cve(SEXP X, SEXP Y, SEXP k, SEXP h,
/* Check `attempts`, if not positive use passed values of `V` as /* Check `attempts`, if not positive use passed values of `V` as
* optimization start value without further attempts. * optimization start value without further attempts.
* Therefor, copy from `V` to `Vout`. */ * Therefor, copy from `V` to `Vout`. */
if (asInteger(attempts) < 1L) { if (asInteger(attempts) < 1) {
// TODO: Check for // TODO: Check for
memcpy(REAL(Vout), REAL(V), p * q * sizeof(double)); memcpy(REAL(Vout), REAL(V), p * q * sizeof(double));
} }
/* Call CVE simple subroutine. */ /* Call CVE */
cve_sub(n, p, q, cve(asMat(X), asMat(Y), asReal(h),
REAL(X), REAL(Y), asReal(h), asInteger(method),
asInteger(method), asReal(momentum), asReal(tau), asReal(tol),
asReal(momentum), asReal(tau), asReal(tol), asReal(slack), asReal(gamma),
asReal(slack), asReal(gamma), asInteger(maxIter), asInteger(attempts),
asInteger(maxIter), asInteger(attempts), asMat(Vout), asMat(Lout),
REAL(Vout), REAL(Lout), logger, loggerEnv);
logger, loggerEnv);
/* Build output list object with names "V", "L" */ /* Build output list object with names "V", "L" */
SEXP out = PROTECT(allocVector(VECSXP, 2)); SEXP out = PROTECT(allocVector(VECSXP, 2));

View File

@ -4,16 +4,16 @@
#include <R_ext/Rdynload.h> #include <R_ext/Rdynload.h>
/* .Call calls */ /* .Call calls */
extern SEXP cve(SEXP X, SEXP Y, SEXP k, SEXP h, extern SEXP cve_export(SEXP X, SEXP Y, SEXP k, SEXP h,
SEXP method, SEXP method,
SEXP V, // initial SEXP V, // initial
SEXP momentum, SEXP tau, SEXP tol, SEXP momentum, SEXP tau, SEXP tol,
SEXP slack, SEXP gamma, SEXP slack, SEXP gamma,
SEXP maxIter, SEXP attempts, SEXP maxIter, SEXP attempts,
SEXP logger, SEXP loggerEnv); SEXP logger, SEXP loggerEnv);
static const R_CallMethodDef CallEntries[] = { static const R_CallMethodDef CallEntries[] = {
{"cve", (DL_FUNC) &cve, 15}, {"cve_export", (DL_FUNC) &cve_export, 15},
{NULL, NULL, 0} {NULL, NULL, 0}
}; };

File diff suppressed because it is too large Load Diff

View File

@ -1,66 +1,31 @@
#include "cve.h" #include "cve.h"
// /**
// * Performas a QR factorization and computes the Q factor.
// *
// * @param A matrix.
// * @returns The Q factor of the QR factorization `A = QR`.
// */
// SEXP qrQ(SEXP Ain) {
// int i, j, info;
// if (!isMatrix(Ain)) {
// error("Argument must be a matrix.");
// }
// int nrow = nrows(Ain);
// int ncol = ncols(Ain);
// double *A = (double*)R_alloc(nrow * ncol, sizeof(double));
// memcpy(A, REAL(Ain), nrow * ncol * sizeof(double));
// // double *A = REAL(Ain);
// // Scalar factors of elementary reflectors.
// double *tau = (double*)R_alloc(ncol, sizeof(double));
// // Create Working memory area.
// int lenWork = 3 * nrow;
// double *memWork = (double*)R_alloc(lenWork, sizeof(double));
// F77_NAME(dgeqrf)(&nrow, &ncol, A, &nrow, tau,
// memWork, &lenWork, &info);
// SEXP Qout = PROTECT(allocMatrix(REALSXP, nrow, ncol));
// double *Q = REAL(Qout);
// for (j = 0; j < ncol; ++j) {
// for (i = 0; i < nrow; ++i) {
// if (i == j) {
// Q[i + nrow * j] = 1.;
// } else {
// Q[i + nrow * j] = 0.;
// }
// }
// }
// F77_NAME(dormqr)("L", "N", &nrow, &ncol, &ncol, A, &nrow, tau, Q, &nrow,
// memWork, &lenWork, &info);
// UNPROTECT(1);
// return Qout;
// }
/** /**
* Draws a sample from invariant measure on the Stiefel manifold \eqn{S(p, q)}. * Draws a sample from invariant measure on the Stiefel manifold \eqn{S(p, q)}.
* *
* @param p row dimension * @param p row dimension
* @param q col dimension * @param q column dimension
* @return \code{p} times \code{q} semi-orthogonal matrix. * @param V (in/out) matrix of dimensions `p x q` or NULL.
* `V <- qr.Q(qr(matrix(rnorm(p * q, 0, 1), p, q)))` * @param workMem work space array of length greater-equal than `2pq + q`.
*
* @return Passed matrix `V` or new created if `V` is NULL.
*
* @example Performs the same operation as the following `R` code:
* V <- qr.Q(qr(matrix(rnorm(p * q, 0, 1), p, q)))
*
* @details ATTENTION: The length of workMem must be at least `2pq + q`.
*/ */
void rStiefel(const int p, const int q, double *V, mat* rStiefel(const int p, const int q, mat *V, double *workMem) {
double *workMem, int workLen) { int i, j, info, workLen = 2 * p * q + q;
int i, j, info;
int pq = p * q; int pq = p * q;
double *v;
if (!V) {
V = matrix(p, q);
} else if (V->nrow != p || V->ncol != q) {
// TODO: error handling!
}
v = V->elem;
GetRNGstate(); GetRNGstate();
for (i = 0; i < pq; ++i) { for (i = 0; i < pq; ++i) {
@ -76,14 +41,12 @@ void rStiefel(const int p, const int q, double *V,
for (j = 0; j < q; ++j) { for (j = 0; j < q; ++j) {
for (i = 0; i < p; ++i) { for (i = 0; i < p; ++i) {
if (i == j) { v[p * j + i] = i == j ? 1.0 : 0.0;
V[i + p * j] = 1.;
} else {
V[i + p * j] = 0.;
}
} }
} }
F77_NAME(dormqr)("L", "N", &p, &q, &q, workMem, &p, tau, V, &p, F77_NAME(dormqr)("L", "N", &p, &q, &q, workMem, &p, tau, V->elem, &p,
workMem + pq + q, &workLen, &info); workMem + pq + q, &workLen, &info);
return V;
} }

View File

@ -1,160 +0,0 @@
#include "cve.h"
/**
* Computes the row sums of a matrix `A`.
* @param A Pointer to col-major matrix elements, size is `nrow * ncol`.
* @param nrow Number of rows of `A`.
* @param ncol Number of columns of `A`.
* @param sum Pointer to output row sums of size `nrow`.
*/
void rowSums(const double *A, const int nrow, const int ncol,
double *sum) {
int i, j, block_size, block_size_i;
const double *A_block = A;
const double *A_end = A + nrow * ncol;
if (nrow > CVE_MEM_CHUNK_SIZE) {
block_size = CVE_MEM_CHUNK_SIZE;
} else {
block_size = nrow;
}
// Iterate `(block_size_i, ncol)` submatrix blocks.
for (i = 0; i < nrow; i += block_size_i) {
// Reset `A` to new block beginning.
A = A_block;
// Take block size of eveything left and reduce to max size.
block_size_i = nrow - i;
if (block_size_i > block_size) {
block_size_i = block_size;
}
// Compute first blocks column,
for (j = 0; j < block_size_i; ++j) {
sum[j] = A[j];
}
// and sum the following columns to the first one.
for (A += nrow; A < A_end; A += nrow) {
for (j = 0; j < block_size_i; ++j) {
sum[j] += A[j];
}
}
// Step one block forth.
A_block += block_size_i;
sum += block_size_i;
}
}
void colSums(const double *A, const int nrow, const int ncol,
double *colSums) {
int i, j;
int nrowb = 4 * (nrow / 4); // 4 * floor(nrow / 4)
double colSum;
for (j = 0; j < ncol; ++j) {
colSum = 0.0;
for (i = 0; i < nrowb; i += 4) {
colSum += A[i]
+ A[i + 1]
+ A[i + 2]
+ A[i + 3];
}
for (; i < nrow; ++i) {
colSum += A[i];
}
*(colSums++) = colSum;
A += nrow;
}
}
void rowSquareSums(const double *A,
const int nrow, const int ncol,
double *sum) {
int i, j, block_size, block_size_i;
const double *A_block = A;
const double *A_end = A + nrow * ncol;
if (nrow > CVE_MEM_CHUNK_SIZE) {
block_size = CVE_MEM_CHUNK_SIZE;
} else {
block_size = nrow;
}
// Iterate `(block_size_i, ncol)` submatrix blocks.
for (i = 0; i < nrow; i += block_size_i) {
// Reset `A` to new block beginning.
A = A_block;
// Take block size of eveything left and reduce to max size.
block_size_i = nrow - i;
if (block_size_i > block_size) {
block_size_i = block_size;
}
// Compute first blocks column,
for (j = 0; j < block_size_i; ++j) {
sum[j] = A[j] * A[j];
}
// and sum the following columns to the first one.
for (A += nrow; A < A_end; A += nrow) {
for (j = 0; j < block_size_i; ++j) {
sum[j] += A[j] * A[j];
}
}
// Step one block forth.
A_block += block_size_i;
sum += block_size_i;
}
}
void rowSumsSymVec(const double *Avec, const int nrow,
const double diag,
double *sum) {
int i, j;
if (diag == 0.0) {
memset(sum, 0, nrow * sizeof(double));
} else {
for (i = 0; i < nrow; ++i) {
sum[i] = diag;
}
}
for (j = 0; j < nrow; ++j) {
for (i = j + 1; i < nrow; ++i, ++Avec) {
sum[j] += *Avec;
sum[i] += *Avec;
}
}
}
void rowDiffs(const double* X, const int nrow, const int ncol,
double *diffs) {
int i, j, k, l;
const double *Xcol;
for (k = l = 0; l < ncol; ++l) {
Xcol = X + l * nrow;
for (i = 0; i < nrow; ++i) {
for (j = i + 1; j < nrow; ++j) {
diffs[k++] = Xcol[i] - Xcol[j];
}
}
}
}
void rowDiffSquareSums(const double* X, const int nrow, const int ncol,
double *sum) {
int i, j, k, l;
const double *Xcol;
double tmp;
memset(sum, 0, ((nrow * (nrow - 1)) / 2) * sizeof(double));
for (l = 0; l < ncol; ++l) {
Xcol = X + l * nrow;
for (k = i = 0; i < nrow; ++i) {
for (j = i + 1; j < nrow; ++j, ++k) {
tmp = Xcol[i] - Xcol[j];
sum[k] += tmp * tmp;
}
}
}
}

View File

@ -1,51 +0,0 @@
#include "cve.h"
#define ROW_SWEEP_ALG(op) \
/* Iterate `(block_size_i, ncol)` submatrix blocks. */ \
for (i = 0; i < nrow; i += block_size_i) { \
/* Set `A` and `C` to block beginning. */ \
A = A_block; \
C = C_block; \
/* Get current block's row size. */ \
block_size_i = nrow - i; \
if (block_size_i > block_size) { \
block_size_i = block_size; \
} \
/* Perform element wise operation for block. */ \
for (; A < A_end; A += nrow, C += nrow) { \
for (j = 0; j < block_size_i; ++j) { \
C[j] = (A[j]) op (v[j]); \
} \
} \
/* Step one block forth. */ \
A_block += block_size_i; \
C_block += block_size_i; \
v += block_size_i; \
}
/* C[, j] = A[, j] op v for each j = 1 to ncol with op as one of +, -, *, / */
void rowSweep(const double *A, const int nrow, const int ncol,
const char* op,
const double *v, // vector of length nrow
double *C) {
int i, j, block_size, block_size_i;
const double *A_block = A;
double *C_block = C;
const double *A_end = A + nrow * ncol;
if (nrow > CVE_MEM_CHUNK_SMALL) { // small because 3 vectors in cache
block_size = CVE_MEM_CHUNK_SMALL;
} else {
block_size = nrow;
}
if (*op == '+') {
ROW_SWEEP_ALG(+)
} else if (*op == '-') {
ROW_SWEEP_ALG(-)
} else if (*op == '*') {
ROW_SWEEP_ALG(*)
} else if (*op == '/') {
ROW_SWEEP_ALG(/)
}
}

View File

@ -27,7 +27,8 @@ Performance:
- [NOT Feasible] Stochastic Version - [NOT Feasible] Stochastic Version
- [NOT Feasible] Gradient Approximations (using Algebraic Software for alternative Loss function formulations and gradient optimizations) - [NOT Feasible] Gradient Approximations (using Algebraic Software for alternative Loss function formulations and gradient optimizations)
- [NOT Sufficient] Alternative Kernels for reducing samples - [NOT Sufficient] Alternative Kernels for reducing samples
- [ ] (To Be further investigated) "Kronecker" optimization - [x] (To Be further investigated) "Kronecker" optimization
- [ ] Implement "Kronecker" optimization
Features (functions): Features (functions):
- [x] Initial `V.init` parameter (only ONE try, ignore number of `attempts` parameter) - [x] Initial `V.init` parameter (only ONE try, ignore number of `attempts` parameter)
@ -48,6 +49,7 @@ Changes:
Errors: Errors:
- [x] `CVE_C` compare to `CVE_legacy`. - [x] `CVE_C` compare to `CVE_legacy`.
- [x] fix: `predict.dim` not found. - [x] fix: `predict.dim` not found.
- [ ] fix/check: error computation for break condition (in `cve.c`)
# Development # Development
## Build and install. ## Build and install.

View File

@ -23,11 +23,11 @@ subspace.dist <- function(B1, B2){
set.seed(437) set.seed(437)
# Number of simulations # Number of simulations
SIM.NR <- 50 SIM.NR <- 50L
# maximal number of iterations in curvilinear search algorithm # maximal number of iterations in curvilinear search algorithm
MAXIT <- 50 MAXIT <- 50L
# number of arbitrary starting values for curvilinear optimization # number of arbitrary starting values for curvilinear optimization
ATTEMPTS <- 10 ATTEMPTS <- 10L
# set names of datasets # set names of datasets
dataset.names <- c("M1", "M2", "M3", "M4", "M5") dataset.names <- c("M1", "M2", "M3", "M4", "M5")
# Set used CVE method # Set used CVE method

4
test.R
View File

@ -17,10 +17,10 @@ library(CVE)
path <- paste0('~/Projects/CVE/tmp/logger_', method, '_', momentum, '.C.pdf') path <- paste0('~/Projects/CVE/tmp/logger_', method, '_', momentum, '.C.pdf')
# Define logger for `cve()` method. # Define logger for `cve()` method.
logger <- function(iter, attempt, data) { logger <- function(attempt, iter, data) {
# Note the `<<-` assignement! # Note the `<<-` assignement!
loss.history[iter + 1, attempt] <<- data$loss loss.history[iter + 1, attempt] <<- data$loss
error.history[iter + 1, attempt] <<- if (data$err > 0) data$err else NA error.history[iter + 1, attempt] <<- data$err
tau.history[iter + 1, attempt] <<- data$tau tau.history[iter + 1, attempt] <<- data$tau
# Compute true error by comparing to the true `B` # Compute true error by comparing to the true `B`
B.est <- null(data$V) # Function provided by CVE B.est <- null(data$V) # Function provided by CVE