2019-09-16 09:15:51 +00:00
|
|
|
% Generated by roxygen2: do not edit by hand
|
|
|
|
% Please edit documentation in R/estimateBandwidth.R
|
|
|
|
\name{estimate.bandwidth}
|
|
|
|
\alias{estimate.bandwidth}
|
2019-10-18 07:06:36 +00:00
|
|
|
\title{Bandwidth estimation for CVE.}
|
2019-09-16 09:15:51 +00:00
|
|
|
\usage{
|
2019-12-16 16:34:35 +00:00
|
|
|
estimate.bandwidth(X, k, nObs, version = 1L)
|
2019-09-16 09:15:51 +00:00
|
|
|
}
|
|
|
|
\arguments{
|
2019-12-20 08:40:46 +00:00
|
|
|
\item{X}{the \eqn{n\times p}{n x p} matrix of predictor values.}
|
2019-09-16 09:15:51 +00:00
|
|
|
|
2019-12-20 08:40:46 +00:00
|
|
|
\item{k}{the SDR dimension.}
|
2019-09-16 09:15:51 +00:00
|
|
|
|
2019-12-16 16:34:35 +00:00
|
|
|
\item{nObs}{number of points in a slice, only for version 2.}
|
|
|
|
|
|
|
|
\item{version}{either \code{1} or \code{2}.}
|
2019-11-20 18:03:21 +00:00
|
|
|
}
|
|
|
|
\value{
|
|
|
|
Estimated bandwidth \code{h}.
|
2019-09-16 09:15:51 +00:00
|
|
|
}
|
|
|
|
\description{
|
2019-12-16 16:34:35 +00:00
|
|
|
If no bandwidth or function for calculating it is supplied, the CVE method
|
|
|
|
defaults to using the following formula (version 1)
|
2019-09-16 09:15:51 +00:00
|
|
|
\deqn{%
|
2019-12-16 16:34:35 +00:00
|
|
|
h = \frac{2 tr(\Sigma)}{p} (1.2 n^{\frac{-1}{4 + k}})^2}{%
|
|
|
|
h = (2 * tr(\Sigma) / p) * (1.2 * n^(-1 / (4 + k)))^2}
|
|
|
|
Alternative version 2 is used for dimension prediction which is given by
|
|
|
|
\deqn{%
|
2019-12-20 08:40:46 +00:00
|
|
|
h = \frac{2 tr(\Sigma)}{p} \chi_k^{-1}(\frac{nObs - 1}{n - 1})}{%
|
2019-12-16 16:34:35 +00:00
|
|
|
h = (2 * tr(\Sigma) / p) * \chi_k^-1((nObs - 1) / (n - 1))}
|
2019-12-20 08:40:46 +00:00
|
|
|
with \eqn{n} the sample size, \eqn{p} the dimension of \eqn{X} and
|
|
|
|
\eqn{\Sigma} is \eqn{(n - 1) / n} times the sample covariance matrix of
|
|
|
|
\eqn{X}.
|
2019-09-16 09:15:51 +00:00
|
|
|
}
|
2019-12-05 16:35:29 +00:00
|
|
|
\examples{
|
|
|
|
# set dimensions for simulation model
|
|
|
|
p <- 5; k <- 1
|
|
|
|
# create B for simulation
|
|
|
|
B <- rep(1, p) / sqrt(p)
|
|
|
|
# samplsize
|
|
|
|
n <- 100
|
|
|
|
set.seed(21)
|
|
|
|
#creat predictor data x ~ N(0, I_p)
|
|
|
|
x <- matrix(rnorm(n * p), n, p)
|
|
|
|
# simulate response variable
|
|
|
|
# y = f(B'x) + err
|
|
|
|
# with f(x1) = x1 and err ~ N(0, 0.25^2)
|
|
|
|
y <- x \%*\% B + 0.25 * rnorm(100)
|
|
|
|
# calculate cve with method 'simple' for k = 1
|
|
|
|
set.seed(21)
|
|
|
|
cve.obj.simple <- cve(y ~ x, k = k)
|
|
|
|
print(estimate.bandwidth(x, k = k))
|
|
|
|
}
|