2019-09-16 09:15:51 +00:00
|
|
|
% Generated by roxygen2: do not edit by hand
|
|
|
|
% Please edit documentation in R/datasets.R
|
|
|
|
\name{dataset}
|
|
|
|
\alias{dataset}
|
|
|
|
\title{Generates test datasets.}
|
|
|
|
\usage{
|
|
|
|
dataset(name = "M1", n, B, p.mix = 0.3, lambda = 1)
|
|
|
|
}
|
|
|
|
\arguments{
|
|
|
|
\item{name}{One of \code{"M1"}, \code{"M2"}, \code{"M3"}, \code{"M4"} or \code{"M5"}}
|
|
|
|
|
|
|
|
\item{n}{nr samples}
|
|
|
|
|
2019-11-22 08:32:14 +00:00
|
|
|
\item{B}{SDR basis used for dataset creation if supplied.}
|
|
|
|
|
2019-09-16 09:15:51 +00:00
|
|
|
\item{p.mix}{Only for \code{"M4"}, see: below.}
|
|
|
|
|
|
|
|
\item{lambda}{Only for \code{"M4"}, see: below.}
|
|
|
|
|
|
|
|
\item{p}{Dim. of random variable \code{X}.}
|
|
|
|
}
|
|
|
|
\value{
|
|
|
|
List with elements
|
|
|
|
\itemize{
|
|
|
|
\item{X}{data}
|
|
|
|
\item{Y}{response}
|
|
|
|
\item{B}{Used dim-reduction matrix}
|
|
|
|
\item{name}{Name of the dataset (name parameter)}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
\description{
|
|
|
|
Provides sample datasets. There are 5 different datasets named
|
2019-10-22 08:33:41 +00:00
|
|
|
M1, M2, M3, M4 and M5 described in the paper references below.
|
2019-09-16 09:15:51 +00:00
|
|
|
The general model is given by:
|
|
|
|
\deqn{Y ~ g(B'X) + \epsilon}
|
|
|
|
}
|
|
|
|
\section{M1}{
|
|
|
|
|
|
|
|
The data follows \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} for a subspace
|
|
|
|
dimension of \eqn{k = 2} with a default of \eqn{n = 200} data points.
|
|
|
|
The link function \eqn{g} is given as
|
2019-10-18 07:06:36 +00:00
|
|
|
\deqn{g(x) = \frac{x_1}{0.5 + (x_2 + 1.5)^2} + \epsilon / 2}{%
|
|
|
|
g(x) = x_1 / (0.5 + (x_2 + 1.5)^2) + epsilon / 2}
|
2019-09-16 09:15:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
\section{M2}{
|
|
|
|
|
2019-10-18 07:06:36 +00:00
|
|
|
\eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} with \eqn{k = 2} with a
|
|
|
|
default of \eqn{n = 200} data points.
|
2019-09-16 09:15:51 +00:00
|
|
|
The link function \eqn{g} is given as
|
2019-10-18 07:06:36 +00:00
|
|
|
\deqn{g(x) = (b_1^T X) (b_2^T X)^2 + \epsilon / 2}
|
2019-09-16 09:15:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
\section{M3}{
|
|
|
|
|
2019-10-18 07:06:36 +00:00
|
|
|
\deqn{g(x) = cos(b_1^T X) + \epsilon / 2}
|
2019-09-16 09:15:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
\section{M4}{
|
|
|
|
|
|
|
|
TODO:
|
|
|
|
}
|
|
|
|
|
|
|
|
\section{M5}{
|
|
|
|
|
|
|
|
TODO:
|
|
|
|
}
|
|
|
|
|