% Generated by roxygen2: do not edit by hand % Please edit documentation in R/datasets.R \name{dataset} \alias{dataset} \title{Generates test datasets.} \usage{ dataset(name = "M1", n, B, p.mix = 0.3, lambda = 1) } \arguments{ \item{name}{One of \code{"M1"}, \code{"M2"}, \code{"M3"}, \code{"M4"} or \code{"M5"}} \item{n}{nr samples} \item{B}{SDR basis used for dataset creation if supplied.} \item{p.mix}{Only for \code{"M4"}, see: below.} \item{lambda}{Only for \code{"M4"}, see: below.} \item{p}{Dim. of random variable \code{X}.} } \value{ List with elements \itemize{ \item{X}{data} \item{Y}{response} \item{B}{Used dim-reduction matrix} \item{name}{Name of the dataset (name parameter)} } } \description{ Provides sample datasets. There are 5 different datasets named M1, M2, M3, M4 and M5 described in the paper references below. The general model is given by: \deqn{Y ~ g(B'X) + \epsilon} } \section{M1}{ The data follows \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} for a subspace dimension of \eqn{k = 2} with a default of \eqn{n = 200} data points. The link function \eqn{g} is given as \deqn{g(x) = \frac{x_1}{0.5 + (x_2 + 1.5)^2} + \epsilon / 2}{% g(x) = x_1 / (0.5 + (x_2 + 1.5)^2) + epsilon / 2} } \section{M2}{ \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} with \eqn{k = 2} with a default of \eqn{n = 200} data points. The link function \eqn{g} is given as \deqn{g(x) = (b_1^T X) (b_2^T X)^2 + \epsilon / 2} } \section{M3}{ \deqn{g(x) = cos(b_1^T X) + \epsilon / 2} } \section{M4}{ TODO: } \section{M5}{ TODO: }