136 lines
5.2 KiB
R
136 lines
5.2 KiB
R
library(tensorPredictors)
|
|
|
|
|
|
# Set PRNG seed to the first 4 digits of the golden ratio for reproducability
|
|
set.seed(1618L, "Mersenne-Twister", "Inversion", "Rejection")
|
|
|
|
### Simulation configuration
|
|
reps <- 100 # number of simulation replications
|
|
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
|
|
|
|
# Parameterize the "true" reductions on the dimension
|
|
gen.beta <- function(pj) {
|
|
as.matrix((-1)^seq_len(pj))
|
|
}
|
|
# the precision matrices are simply diag(pj)
|
|
|
|
|
|
# sampling from the conditional matrix normal `X | Y = y ~ N(mu(y), I_{p1 p2})`
|
|
sample.data <- function(sample.size, betas, Omegas, eta1 = 0) {
|
|
# responce is a standard normal variable
|
|
y <- rnorm(sample.size)
|
|
# F(y) is identical to y, except its a tensor (last axis is sample axis)
|
|
F <- array(y, dim = c(mapply(ncol, betas), sample.size))
|
|
|
|
# sample predictors from tensor normal X | Y = y (last axis is sample axis)
|
|
sample.axis <- length(betas) + 1L
|
|
Deltas <- Map(solve, Omegas) # normal covariances
|
|
mu_y <- mlm(mlm(F, betas) + as.vector(eta1), Deltas) # conditional mean
|
|
X <- mu_y + rtensornorm(sample.size, 0, Deltas, sample.axis) # responses X
|
|
|
|
list(X = X, F = F, y = y, sample.axis = sample.axis)
|
|
}
|
|
|
|
|
|
# Open simulation CSV log file
|
|
log.name <- format(Sys.time(), "sim_efficiency-%Y%m%dT%H%M.csv")
|
|
log.file <- file(log.name, "w")
|
|
# Counts new number of writes purely here to write the CSV header the first time
|
|
log.writes <- 0L
|
|
|
|
# Setting p1 = p2 = pj (note, in the paper `p = p1 p2`)
|
|
mode.dims <- round(1.2^unique(round(logb(2:32, 1.2))))
|
|
for (pj in mode.dims) {
|
|
|
|
betas.true <- list(gen.beta(pj), gen.beta(pj))
|
|
B.true <- kronecker(betas.true[[2]], betas.true[[1]])
|
|
Omegas.true <- list(diag(pj), diag(pj))
|
|
|
|
for (sample.size in sample.sizes) {
|
|
|
|
sim <- sapply(seq_len(reps), function(.) {
|
|
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas.true, Omegas.true)
|
|
|
|
ds.lm <- tryCatch({
|
|
B.lm <- unname(lm.fit(t(`dim<-`(X, c(pj^2, sample.size))), drop(F))$coefficients)
|
|
dist.subspace(B.true, B.lm, normalize = TRUE)
|
|
}, error = function(.) NA)
|
|
|
|
# c(., betas.vec, Omegas.vec) %<-% gmlm_tensor_normal(`dim<-`(X, c(pj^2, sample.size)), drop(F))
|
|
|
|
c(., betas.gmlm, Omegas.gmlm) %<-% gmlm_tensor_normal(X, F)
|
|
|
|
c(., betas.mani, Omegas.mani) %<-% gmlm_tensor_normal(X, F,
|
|
proj.Omegas = rep(list(function(O) { diag(mean(diag(O)), nrow(O)) }), 2)
|
|
)
|
|
|
|
# ds.vec <- dist.subspace(B.true, betas.vec[[1]], normalize = TRUE)
|
|
ds.vec <- NA
|
|
ds.gmlm <- dist.subspace(betas.true, betas.gmlm, normalize = TRUE) # equiv to R> dist.subspace(B.true, B.gmlm)
|
|
ds.mani <- dist.subspace(betas.true, betas.mani, normalize = TRUE)
|
|
|
|
c(lm = ds.lm, vec = ds.vec, gmlm = ds.gmlm, mani = ds.mani)
|
|
})
|
|
|
|
sim <- as.data.frame(t(sim))
|
|
sim$sample.size <- sample.size
|
|
sim$pj <- pj
|
|
|
|
# Append current simulation results to log-file
|
|
write.table(sim, file = log.file, sep = ",",
|
|
row.names = FALSE, col.names = (log.writes <- log.writes + 1L) < 2L
|
|
)
|
|
|
|
# print progress
|
|
cat(sprintf("mode dim (%d): %d/%d - sample size (%d): %d/%d\n",
|
|
pj, which(pj == mode.dims), length(mode.dims),
|
|
sample.size, which(sample.size == sample.sizes), length(sample.sizes)
|
|
))
|
|
}
|
|
}
|
|
close(log.file)
|
|
|
|
|
|
# Read simulation data back in
|
|
sim <- read.csv(log.name)
|
|
|
|
with(merge(
|
|
aggregate(sim, . ~ sample.size + pj, mean, na.rm = TRUE, na.action = na.pass),
|
|
aggregate(sim, . ~ sample.size + pj, sd, na.rm = TRUE, na.action = na.pass),
|
|
by = c("sample.size", "pj"),
|
|
suffixes = c("", ".sd"),
|
|
all = FALSE
|
|
), {
|
|
plot(range(pj), 0:1, type = "n",
|
|
main = "Simulation -- Efficiency Gain",
|
|
xlab = expression(tilde(p)),
|
|
ylab = expression(d(B, hat(B)))
|
|
)
|
|
for (sz in sort(unique(sample.size))) {
|
|
i <- order(pj)[(sample.size == sz)[order(pj)]]
|
|
i <- i[!(is.na(lm[i]) | is.na(lm.sd[i]))]
|
|
polygon(c(pj[i], rev(pj[i])), c(lm[i] + lm.sd[i], rev(lm[i] - lm.sd[i])),
|
|
col = paste0("#cf7d03", "50"), border = NA
|
|
)
|
|
i <- order(pj)[(sample.size == sz)[order(pj)]]
|
|
polygon(c(pj[i], rev(pj[i])), c(vec[i] + vec.sd[i], rev(vec[i] - vec.sd[i])),
|
|
col = paste0("#b30303", "50"), border = NA
|
|
)
|
|
polygon(c(pj[i], rev(pj[i])), c(gmlm[i] + gmlm.sd[i], rev(gmlm[i] - gmlm.sd[i])),
|
|
col = paste0("#002d8d", "50"), border = NA
|
|
)
|
|
polygon(c(pj[i], rev(pj[i])), c(mani[i] + mani.sd[i], rev(mani[i] - mani.sd[i])),
|
|
col = paste0("#006e18", "50"), border = NA
|
|
)
|
|
}
|
|
lty.idx <- 1L
|
|
for (sz in sort(unique(sample.size))) {
|
|
i <- order(pj)[(sample.size == sz)[order(pj)]]
|
|
lines(pj[i], lm[i], type = "b", pch = 16, col = "#cf7d03", lty = lty.idx, lwd = 2)
|
|
lines(pj[i], vec[i], type = "b", pch = 16, col = "#b30303", lty = lty.idx, lwd = 2)
|
|
lines(pj[i], gmlm[i], type = "b", pch = 16, col = "#002d8d", lty = lty.idx, lwd = 2)
|
|
lines(pj[i], mani[i], type = "b", pch = 16, col = "#006e18", lty = lty.idx, lwd = 2)
|
|
lty.idx <- lty.idx + 1L
|
|
}
|
|
})
|