add: Efficiency simulation requested by Annals reviewer

This commit is contained in:
Daniel Kapla 2025-11-03 11:28:39 +01:00
parent 3724166e8d
commit 29711908a2

View File

@ -39,7 +39,7 @@ log.file <- file(log.name, "w")
log.writes <- 0L
# Setting p1 = p2 = pj (note, in the paper `p = p1 p2`)
mode.dims <- round(1.2^unique(round(logb(2:200, 1.2))))
mode.dims <- round(1.2^unique(round(logb(2:32, 1.2))))
for (pj in mode.dims) {
betas.true <- list(gen.beta(pj), gen.beta(pj))
@ -52,11 +52,11 @@ for (pj in mode.dims) {
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas.true, Omegas.true)
ds.lm <- tryCatch({
unname(lm.fit(t(`dim<-`(X, c(pj^2, sample.size))), drop(F))$coefficients)
B.lm <- unname(lm.fit(t(`dim<-`(X, c(pj^2, sample.size))), drop(F))$coefficients)
dist.subspace(B.true, B.lm, normalize = TRUE)
}, error = function(.) NA)
c(., betas.vec, Omegas.vec) %<-% gmlm_tensor_normal(`dim<-`(X, c(pj^2, sample.size)), drop(F))
# c(., betas.vec, Omegas.vec) %<-% gmlm_tensor_normal(`dim<-`(X, c(pj^2, sample.size)), drop(F))
c(., betas.gmlm, Omegas.gmlm) %<-% gmlm_tensor_normal(X, F)
@ -64,8 +64,8 @@ for (pj in mode.dims) {
proj.Omegas = rep(list(function(O) { diag(mean(diag(O)), nrow(O)) }), 2)
)
ds.vec <- dist.subspace(B.true, betas.vec[[1]], normalize = TRUE)
# ds.vec <- dist.subspace(B.true, betas.vec[[1]], normalize = TRUE)
ds.vec <- NA
ds.gmlm <- dist.subspace(betas.true, betas.gmlm, normalize = TRUE) # equiv to R> dist.subspace(B.true, B.gmlm)
ds.mani <- dist.subspace(betas.true, betas.mani, normalize = TRUE)
@ -76,9 +76,6 @@ for (pj in mode.dims) {
sim$sample.size <- sample.size
sim$pj <- pj
# boxplot(t(sim))
# summary(t(sim))
# Append current simulation results to log-file
write.table(sim, file = log.file, sep = ",",
row.names = FALSE, col.names = (log.writes <- log.writes + 1L) < 2L
@ -97,41 +94,25 @@ close(log.file)
# Read simulation data back in
sim <- read.csv(log.name)
# with(aggregate(sim, . ~ sample.size + pj, mean), {
# plot(range(pj), range(c(vec, gmlm, mani)), type = "n",
# main = "Simulation -- Efficiency Gain",
# xlab = expression(tilde(p)),
# ylab = expression(d(B, hat(B)))
# )
# for (sz in sort(unique(sample.size))) {
# i <- order(pj)[sample.size == sz]
# lines(pj[i], vec[i], type = "b", pch = 16, col = sz %/% 100, lty = 1)
# lines(pj[i], gmlm[i], type = "b", pch = 16, col = sz %/% 100, lty = 2)
# lines(pj[i], mani[i], type = "b", pch = 16, col = sz %/% 100, lty = 3)
# }
# sd <- aggregate(sim, . ~ sample.size + pj, sd)
# })
with(merge(
aggregate(sim[names(sim) != "lm"], . ~ sample.size + pj, mean),
aggregate(sim[names(sim) != "lm"], . ~ sample.size + pj, sd),
aggregate(sim, . ~ sample.size + pj, mean, na.rm = TRUE, na.action = na.pass),
aggregate(sim, . ~ sample.size + pj, sd, na.rm = TRUE, na.action = na.pass),
by = c("sample.size", "pj"),
suffixes = c("", ".sd"),
all = FALSE
), {
plot(range(pj), range(c(vec, gmlm, mani)), type = "n",
plot(range(pj), 0:1, type = "n",
main = "Simulation -- Efficiency Gain",
xlab = expression(tilde(p)),
ylab = expression(d(B, hat(B)))
)
# colors <- c("#cf7d03ff", "#002d8d", "#006e18")
# col.idx <- 0L
lty.idx <- 0L
for (sz in sort(unique(sample.size))) {
i <- order(pj)[(sample.size == sz)[order(pj)]]
# polygon(c(pj[i], rev(pj[i])), c(lm[i] + lm.sd[i], rev(lm[i] - lm.sd[i])),
# col = paste0("#cf7d03", "50"), border = NA
# )
i <- i[!(is.na(lm[i]) | is.na(lm.sd[i]))]
polygon(c(pj[i], rev(pj[i])), c(lm[i] + lm.sd[i], rev(lm[i] - lm.sd[i])),
col = paste0("#cf7d03", "50"), border = NA
)
i <- order(pj)[(sample.size == sz)[order(pj)]]
polygon(c(pj[i], rev(pj[i])), c(vec[i] + vec.sd[i], rev(vec[i] - vec.sd[i])),
col = paste0("#b30303", "50"), border = NA
)
@ -145,38 +126,10 @@ with(merge(
lty.idx <- 1L
for (sz in sort(unique(sample.size))) {
i <- order(pj)[(sample.size == sz)[order(pj)]]
# lines(pj[i], lm[i], type = "b", pch = 16, col = "#cf7d03", lty = lty.idx, lwd = 2)
lines(pj[i], lm[i], type = "b", pch = 16, col = "#cf7d03", lty = lty.idx, lwd = 2)
lines(pj[i], vec[i], type = "b", pch = 16, col = "#b30303", lty = lty.idx, lwd = 2)
lines(pj[i], gmlm[i], type = "b", pch = 16, col = "#002d8d", lty = lty.idx, lwd = 2)
lines(pj[i], mani[i], type = "b", pch = 16, col = "#006e18", lty = lty.idx, lwd = 2)
lty.idx <- lty.idx + 1L
}
})
# unname(lm.fit(t(`dim<-`(X, c(pj^2, sample.size))), drop(F))$coefficients)
# unname(lm(drop(F) ~ t(`dim<-`(X, c(pj^2, sample.size))) - 1)$coefficients)
# require(utils)
# set.seed(129)
# n <- 7 ; p <- 2
# X <- matrix(rnorm(n * p), n, p) # no intercept!
# y <- rnorm(n)
# w <- rnorm(n)^2
# str(lmw <- lm.wfit(x = X, y = y, w = w))
# str(lm. <- lm.fit (x = X, y = y))
# if(require("microbenchmark")) {
# mb <- microbenchmark(lm(y~X), lm.fit(X,y), .lm.fit(X,y))
# print(mb)
# boxplot(mb, notch=TRUE)
# }