2021-11-12 17:22:45 +00:00
|
|
|
solve.gep <- function(A, B, d = nrow(A)) {
|
|
|
|
isrB <- matpow(B, -0.5)
|
|
|
|
|
2021-11-16 11:01:12 +00:00
|
|
|
if ((d < nrow(A)) && requireNamespace("RSpectra", quietly = TRUE)) {
|
2021-11-12 17:22:45 +00:00
|
|
|
eig <- RSpectra::eigs_sym(isrB %*% A %*% isrB, d)
|
|
|
|
} else {
|
|
|
|
eig <- eigen(isrB %*% A %*% isrB, symmetric = TRUE)
|
|
|
|
}
|
|
|
|
|
2021-11-16 11:01:12 +00:00
|
|
|
list(vectors = isrB %*% eig$vectors[, 1:d, drop = FALSE], values = eig$values)
|
2021-11-12 17:22:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
POI.lambda.max <- function(A, d = 1L, method = c('POI-C', 'POI-L', 'FastPOI-C', 'FastPOI-L')) {
|
|
|
|
method <- match.arg(method)
|
|
|
|
|
|
|
|
if (method %in% c('POI-C', 'POI-L')) {
|
|
|
|
A2 <- apply(apply(A^2, 2, sort, decreasing = TRUE), 2, cumsum)
|
|
|
|
lambda.max <- sqrt(apply(A2[1:d, , drop = FALSE], 1, max))
|
|
|
|
if (method == 'POI-C') {
|
|
|
|
lambda.max[d]
|
|
|
|
} else {
|
|
|
|
lambda.max[1]
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (requireNamespace("RSpectra", quietly = TRUE)) {
|
|
|
|
vec <- RSpectra::eigs_sym(A, d)$vectors
|
|
|
|
} else {
|
|
|
|
vec <- eigen(A, symmetric = TRUE)$vectors
|
|
|
|
}
|
|
|
|
if (method == 'FastPOI-C') {
|
|
|
|
sqrt(max(rowSums(vec^2)))
|
|
|
|
} else { # 'FastPOI-L'
|
|
|
|
max(abs(vec))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-06-10 14:35:27 +00:00
|
|
|
#' Penalysed Orthogonal Iteration.
|
|
|
|
#'
|
2021-11-16 11:01:12 +00:00
|
|
|
#' @param A Left hand side of GEP
|
|
|
|
#' @param B right hand side of GEP
|
|
|
|
#' @param d number of eigen-vectors, -values to be computed coresponding to the
|
|
|
|
#' largest \eqn{d} eigenvalues of the penalized GEP
|
|
|
|
#' @param sparsity scaling for max penalty term in [0, 1) where 0 corresponds to
|
|
|
|
#' no penalization and 1 leads to the trivial solution. (default: 1 / 2)
|
|
|
|
#' @param method ether \code{"POI-C"} or \code{"FastPOI-C"} where
|
|
|
|
#' POI-C: Penalized Orthogonal Iteration with Coordinate-wise Lasso penalty
|
|
|
|
#' FastPOI-C: Fast POI with Coordinate-wise Lasso penalty
|
|
|
|
#' where the Coordinate-wise Lasso is a group Lasso penalty.
|
|
|
|
#' @param iter.outer maximum number of orthogonal iterations (ignored by Fast
|
|
|
|
#' methods)
|
|
|
|
#' @param iter.inner maximum number of inner iterations
|
|
|
|
#' @param tol numerical tolerance. Absolute values smaller than \code{tol} are
|
|
|
|
#' treated as 0.
|
2021-10-29 16:16:40 +00:00
|
|
|
#'
|
|
|
|
#' @export
|
2021-11-12 17:22:45 +00:00
|
|
|
POI <- function(A, B, d = 1L, sparsity = 0.5,
|
2021-11-16 11:01:12 +00:00
|
|
|
method = c('POI-C', 'FastPOI-C'), # TODO: Maybe implement Lasso penalty too
|
2021-11-12 17:22:45 +00:00
|
|
|
iter.outer = 100L, iter.inner = 500L,
|
2021-11-16 11:01:12 +00:00
|
|
|
tol = sqrt(.Machine$double.eps),
|
|
|
|
use.C = FALSE
|
2021-11-12 17:22:45 +00:00
|
|
|
) {
|
|
|
|
method <- match.arg(method)
|
|
|
|
|
|
|
|
# Compute penalty parameter lambda
|
|
|
|
lambda <- sparsity * POI.lambda.max(A, d, method)
|
|
|
|
|
|
|
|
# Ensure RHS B to be positive definite
|
|
|
|
if (missing(B)) {
|
|
|
|
B <- diag(nrow(A))
|
|
|
|
} else {
|
|
|
|
rankB <- qr(B, tol)$rank
|
|
|
|
if (rankB < nrow(B)) {
|
|
|
|
diag(B) <- diag(B) + log(nrow(B)) / rankB
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
# In case of zero penalty compute ordinary GEP solution
|
|
|
|
if (lambda == 0) {
|
|
|
|
eig <- solve.eig(A, B, d)
|
|
|
|
return(structure(list(
|
|
|
|
U = eig$vectors, d = eig$values,
|
|
|
|
lambda = 0, call = match.call()
|
|
|
|
), class = c("tensor_predictor", "POI")))
|
|
|
|
}
|
|
|
|
|
|
|
|
# Set initial values
|
|
|
|
if (requireNamespace("RSpectra", quietly = TRUE) && nrow(A) < d) {
|
2021-11-04 12:05:15 +00:00
|
|
|
Delta <- RSpectra::eigs_sym(A, d)$vectors
|
2020-06-10 14:35:27 +00:00
|
|
|
} else {
|
2021-11-04 12:05:15 +00:00
|
|
|
Delta <- eigen(A, symmetric = TRUE)$vectors[, 1:d, drop = FALSE]
|
2020-06-10 14:35:27 +00:00
|
|
|
}
|
2021-11-12 17:22:45 +00:00
|
|
|
|
2021-11-16 11:01:12 +00:00
|
|
|
# In case of fast POI, only one iteration
|
|
|
|
if (startsWith(method, 'Fast')) {
|
|
|
|
# Step 1: Optimize (inner loop, a.k.a. coordinate wise penalization)
|
|
|
|
if (use.C) {
|
|
|
|
Z <- .Call('FastPOI_C_sub', B, Delta, lambda,
|
|
|
|
as.integer(iter.inner), tol,
|
|
|
|
PACKAGE = 'tensorPredictors')
|
|
|
|
} else {
|
|
|
|
# Initial value
|
|
|
|
Z <- Delta
|
|
|
|
|
|
|
|
# Note, the R implementation does NOT use a cyclic update instead
|
|
|
|
# performs coordinate penalization in parallel
|
|
|
|
for (j in seq_len(iter.inner)) {
|
|
|
|
Z.last <- Z # for break condition
|
|
|
|
|
|
|
|
# TODO: it seems (in general) that the cyclic update is actually needed!
|
|
|
|
traces <- Delta - B %*% Z + diag(B) * Z
|
|
|
|
Z <- traces * (pmax(1 - lambda / sqrt(rowSums(traces^2)), 0) / diag(B))
|
|
|
|
|
|
|
|
# Inner break condition (second condition safeguards against devergence)
|
|
|
|
diff <- norm(Z.last - Z, 'F')
|
|
|
|
if (diff < tol || 1 < tol * diff) {
|
|
|
|
break
|
|
|
|
}
|
2020-06-10 14:35:27 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-11-16 11:01:12 +00:00
|
|
|
# Step 2: QR decomposition (same as below)
|
2021-11-12 17:22:45 +00:00
|
|
|
if (d == 1L) {
|
|
|
|
Z.norm <- norm(Z, 'F')
|
|
|
|
if (Z.norm < tol) {
|
|
|
|
Q <- matrix(0, p, d)
|
|
|
|
} else {
|
|
|
|
Q <- Z / Z.norm
|
|
|
|
}
|
2020-06-10 14:35:27 +00:00
|
|
|
} else {
|
2021-11-12 17:22:45 +00:00
|
|
|
# Detect zero columns.
|
|
|
|
zero.col <- colSums(abs(Z)) < tol
|
|
|
|
if (all(zero.col)) {
|
|
|
|
Q <- matrix(0, p, d)
|
|
|
|
} else if (any(zero.col)) {
|
|
|
|
Q <- matrix(0, p, d)
|
|
|
|
Q[, !zero.col] <- qr.Q(qr(Z[, !zero.col]))
|
|
|
|
} else {
|
|
|
|
Q <- qr.Q(qr(Z))
|
|
|
|
}
|
2020-06-10 14:35:27 +00:00
|
|
|
}
|
2021-11-16 11:01:12 +00:00
|
|
|
} else { # POI-C
|
|
|
|
Q <- Delta
|
|
|
|
Z <- matrix(0, nrow(Q), ncol(Q))
|
|
|
|
|
|
|
|
# Outer loop (iteration)
|
|
|
|
for (i in seq_len(iter.outer)) {
|
|
|
|
Q.last <- Q # for break condition
|
|
|
|
|
|
|
|
# Step 1: Solve B Z_i = A Q_{i-1} for Z_i
|
|
|
|
Delta <- crossprod(A, Q)
|
|
|
|
|
|
|
|
# Inner Loop
|
|
|
|
if (use.C) {
|
|
|
|
Z <- .Call('FastPOI_C_sub', B, Delta, lambda,
|
|
|
|
as.integer(iter.inner), tol,
|
|
|
|
PACKAGE = 'tensorPredictors')
|
|
|
|
} else {
|
|
|
|
# Note, the R implementation does NOT use a cyclic update instead
|
|
|
|
# performs coordinate penalization in parallel
|
|
|
|
for (j in seq_len(iter.inner)) {
|
|
|
|
Z.last <- Z # for break condition
|
|
|
|
|
|
|
|
# TODO: it seems (in general) that the cyclic update is actually needed!
|
|
|
|
traces <- Delta - B %*% Z + diag(B) * Z
|
|
|
|
Z <- traces * (pmax(1 - lambda / sqrt(rowSums(traces^2)), 0) / diag(B))
|
|
|
|
|
|
|
|
# Inner break condition (second condition safeguards against devergence)
|
|
|
|
diff <- norm(Z.last - Z, 'F')
|
|
|
|
if (diff < tol || 1 < tol * diff) {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2021-11-12 17:22:45 +00:00
|
|
|
|
2021-11-16 11:01:12 +00:00
|
|
|
# Step 2: QR decomposition of Z_i = Q_i R_i.
|
|
|
|
if (d == 1L) {
|
|
|
|
Z.norm <- norm(Z, 'F')
|
|
|
|
if (Z.norm < tol) {
|
|
|
|
Q <- matrix(0, p, d)
|
|
|
|
} else {
|
|
|
|
Q <- Z / Z.norm
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
# Detect zero columns.
|
|
|
|
zero.col <- colSums(abs(Z)) < tol
|
|
|
|
if (all(zero.col)) {
|
|
|
|
Q <- matrix(0, nrow(Z), ncol(Z))
|
|
|
|
} else if (any(zero.col)) {
|
|
|
|
Q <- matrix(0, nrow(Z), ncol(Z))
|
|
|
|
Q[, !zero.col] <- qr.Q(qr(Z[, !zero.col]))
|
|
|
|
} else {
|
|
|
|
Q <- qr.Q(qr(Z))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
# Outer break condition || Q Q' - Q.last Q.last' || < tol
|
|
|
|
# The used form is equivalent but much faster for d << p
|
|
|
|
# The following holds in general for two matrices A, B of dim p x d
|
|
|
|
# || A A' - B B' ||^2 = || A' A ||^2 - 2 || A' B ||^2 + || B' B ||^2
|
|
|
|
# for the Frobenius norm ||.||. The computational cost of the left side
|
|
|
|
# is O(p^2 d) while the right side has O(p d^2).
|
|
|
|
tr <- sum(crossprod(Q)^2) -
|
|
|
|
2 * sum(crossprod(Q, Q.last)^2) +
|
|
|
|
sum(crossprod(Q.last)^2)
|
|
|
|
if (sqrt(max(0, tr)) < tol) {
|
|
|
|
break
|
|
|
|
}
|
2020-06-10 14:35:27 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-11-16 11:01:12 +00:00
|
|
|
# Reconstruct solution of the original GEP by solving
|
|
|
|
# (Q' A Q) T = (Q' B Q) T D
|
|
|
|
# for T and D which gives the solution U = Q T and Lambda = D.
|
|
|
|
if (1 < d) {
|
|
|
|
eig <- solve.gep(crossprod(Q, A) %*% Q, crossprod(Q, B) %*% Q)
|
|
|
|
vectors <- Q %*% eig$vectors
|
|
|
|
values <- eig$values
|
|
|
|
} else {
|
|
|
|
vectors <- Q
|
|
|
|
values <- c((crossprod(Q, A) %*% Q) / (crossprod(Q, B) %*% Q))
|
|
|
|
}
|
2021-11-12 17:22:45 +00:00
|
|
|
|
|
|
|
structure(list(
|
2021-11-16 11:01:12 +00:00
|
|
|
vectors = vectors,
|
|
|
|
values = values,
|
2021-11-12 17:22:45 +00:00
|
|
|
lambda = lambda,
|
|
|
|
call = match.call()
|
|
|
|
), class = c("tensor_predictor", "POI"))
|
2020-06-10 14:35:27 +00:00
|
|
|
}
|