tensor_predictors/tensorPredictors/R/poi.R

80 lines
2.3 KiB
R
Raw Normal View History

2020-06-10 14:35:27 +00:00
#' Penalysed Orthogonal Iteration.
#'
#' @param lambda Default: 0.75 * lambda_max for FastPOI-C method.
#'
#' @note use.C required 'poi.so' beeing dynamicaly loaded.
#' dyn.load('../tensor_predictors/poi.so')
POI <- function(A, B, d,
lambda = 0.75 * sqrt(max(rowSums(Delta^2))),
update.tol = 1e-3,
tol = 100 * .Machine$double.eps,
maxit = 400L,
maxit.outer = maxit,
maxit.inner = maxit,
use.C = FALSE,
method = 'FastPOI-C') {
# TODO:
stopifnot(method == 'FastPOI-C')
if (nrow(A) < 100) {
Delta <- eigen(A, symmetric = TRUE)$vectors[, 1:d, drop = FALSE]
} else {
Delta <- try(RSpectra::eigs_sym(A, d)$vectors, silent = TRUE)
if (is(Delta, 'try-error')) {
Delta <- eigen(A, symmetric = TRUE)$vectors[1:d, , drop = FALSE]
}
}
# Set initial value.
Z <- Delta
# Step 1: Optimization.
# The "inner" optimization loop, aka repeated coordinate optimization.
if (use.C) {
Z <- .Call('FastPOI_C_sub', A, B, Delta, lambda, as.integer(maxit.inner),
PACKAGE = 'poi')
} else {
p <- nrow(Z)
for (iter.inner in 1:maxit.inner) {
Zold <- Z
for (g in 1:p) {
a <- Delta[g, ] - B[g, ] %*% Z + B[g, g] * Z[g, ]
a_norm <- sqrt(sum(a^2))
if (a_norm > lambda) {
Z[g, ] <- a * ((1 - lambda / a_norm) / B[g, g])
} else {
Z[g, ] <- 0
}
}
if (norm(Z - Zold, 'F') < update.tol) {
break;
}
}
}
# Step 2: QR decomposition.
if (d == 1L) {
Z_norm <- sqrt(sum(Z^2))
if (Z_norm < tol) {
Q <- matrix(0, p, d)
} else {
Q <- Z / Z_norm
}
} else {
# Detect zero columns.
zeroColumn <- colSums(abs(Z)) < tol
if (all(zeroColumn)) {
Q <- matrix(0, p, d)
} else if (any(zeroColumn)) {
Q <- matrix(0, p, d)
Q[, !zeroColumn] <- qr.Q(qr(Z))
} else {
Q <- qr.Q(qr(Z))
}
}
return(list(Z = Z, Q = Q, iter.inner = if (use.C) NA else iter.inner,
lambda = lambda))
}