Riccardos Matlab Files

This commit is contained in:
Moonwalker777 2022-05-13 12:48:34 +02:00
parent f42f466230
commit f7b816c68b
4 changed files with 277 additions and 0 deletions

59
Exercise_03/Dirichlet_EA.m Executable file
View File

@ -0,0 +1,59 @@
function [x,t,u] = Dirichlet_EA(L,N,T,K,c1,c2,f,u0,D)
% ---- Solution of heat equation ----
% u_t - u_xx = f in the interval [-L,L] (doesn't matter if we change it)
% Dirichlet BC
%
% -----------------------------------------------
% Sintassi:
% [x,t,u]=calore_template(L,N,T,K,c1,c2,fun,u0)
%
% Input:
% L Half of the width (-L,L)
% N number of intervals in (-L,L)
% T max time (0,T)
% K number of intervals in (0,T)
% c1 Dirichlet BC in x=-L
% c2 Dirichlet BC in x=L
% f force function
% u0 initial condition in t=0
%
% Output:
% x vector of the spatial nodes
% t vector of the time nodes
% u numeric solution of the problem
% discretisation step in time and space
h=L/N; %space
tau=T/K; %time
% Initialization of t
t=linspace(0,T,K+1)';
% initialization of x
x=linspace(0,L,N+1);
% Initialization of the matrix solution u
u=zeros(N+1,K+1);
% Intial conditions
u(:,1)=u0(x);
% BC
u(1,:)=c1(t);
u(end,:)=c2(t);
% Creation of the matrix A
% We obtained this matrix using the Central Discretization method
e=ones(N-1,1);
A=spdiags([-e,2*e,-e],[-1,0,1],N-1,N-1)/(h^2);
I=speye(N-1,N-1);
% Compute the solution
% What we are doing here is to compute the solution in the interval for
% each time k
for k=1:K
% Assembly of the force
F=f(x(2:end-1),t(k));
% Correction of the force using the BC
F(1)=F(1) + D*c1(t(k))/(h^2);
F(end)=F(end) + D*c2(t(k))/(h^2);
% Solution using Eulero forward
u(2:end-1,k+1) = ((I - tau*D*A)*u(2:end-1,k))' + tau*F;
end

63
Exercise_03/Mixed_EA.m Executable file
View File

@ -0,0 +1,63 @@
function [x,t,u] = Mixed_EA(L,N,T,K,c1,c2,f,u0,D)
% ---- Solution of heat equation ----
% u_t - u_xx = f in the interval [-L,L] (doesn't matter if we change it)
% Dirichlet BC
%
% -----------------------------------------------
% Sintassi:
% [x,t,u]=calore_template(L,N,T,K,c1,c2,fun,u0)
%
% Input:
% L Half of the width (-L,L)
% N number of intervals in (-L,L)
% T max time (0,T)
% K number of intervals in (0,T)
% c1 Dirichlet BC in x=-L
% c2 Dirichlet BC in x=L
% f force function
% u0 initial condition in t=0
%
% Output:
% x vector of the spatial nodes
% t vector of the time nodes
% u numeric solution of the problem
% discretisation step in time and space
h=L/N; %space
tau=T/K; %time
% Initialization of t
t=linspace(0,T,K+1)';
% initialization of x
x=linspace(0,L,N+1);
% Initialization of the matrix solution u
u=zeros(N+1,K+1);
% Intial conditions
u(:,1)=u0(x);
% BC Dirichlet
u(1,:)=c1(t);
% Creation of the matrix A
% We obtained this matrix using the Central Discretization method
e=ones(N-1,1);
A=spdiags([-e,2*e,-e],[-1,0,1],N-1,N-1)/(h^2);
%modify the matrix such that we can use the noimann condition to calculate
%the last node.
%In this case we want to use a second order decentralized approximation
A(end,end-1)=-2/(h^2);
I=speye(N-1,N-1);
% Compute the solution
% What we are doing here is to compute the solution in the interval for
% each time k
for k=1:K
% Assembly of the force
F=f(x(2:end-1),t(k));
% Correction of the force using the BC
F(1)=F(1) + D*c1(t(k))/(h^2);
F(end)=F(end) + 2*h*c2;
% Solution using Eulero forward
u(2:end-1,k+1) = ((I - D*tau*A)*u(2:end-1,k))' + tau*F;
u(end,k+1)=u(end-2,k+1) + c2*2*h*D;
end

62
Exercise_03/Mixed_EI.m Executable file
View File

@ -0,0 +1,62 @@
function [x,t,u] = Mixed_EI(L,N,T,K,c1,c2,f,u0,D)
% ---- Risoluzione dell'equazione del calore ----
% u_t - u_xx = f nell'intervallo [-L,L]
% con condizioni al bordo di Dirichlet
% e condizioni iniziali.
% -----------------------------------------------
% Sintassi:
% [x,t,u]=calore_template(L,N,T,K,c1,c2,fun,u0)
%
% Input:
% L semiampiezza intervallo spaziale (-L,L)
% N numero di sottointervalli in (-L,L)
% T estremo finale intervallo temporale (0,T)
% K numero di sottointervalli in (0,T)
% c1 funzione che descrive la condizione di Dirichlet in x=-L
% c2 funzione che descrive la condizione di Dirichlet in x=L
% f funzione che descrive il termine noto dell'equazione
% u0 funzione che descrive la condizione iniziale in t=0
%
% Output:
% x vettore dei nodi spaziali
% t vettore dei nodi temporali
% u soluzione numerica
% del problema
% Calcolo passo di discretizzazione in spazio e tempo
h=L/N;
tau=T/K;
% Inizializzazione del vettore t
t=linspace(0,T,K+1);
% Inizializzazione del vettore x
x=linspace(0,L,N+1);
% Inizializzazione della matrice soluzione u
u=zeros(N+1,K+1);
% Condizione iniziale
u(:,1)=u0(x);
% BC Dirichlet
u(1,:)=c1(t);
% Creation of the matrix A
% We obtained this matrix using the Central Discretization method
e=ones(N-1,1);
A=spdiags([-e,2*e,-e],[-1,0,1],N-1,N-1)/(h^2);
%modify the matrix such that we can use the noimann condition to calculate
%the last node.
%In this case we want to use a second order decentralized approximation
A(end,end-1)=-2/(h^2);
I=speye(N-1,N-1);
for k=1:K
% Assemblaggio termine noto
F=f(x(2:end-1),t(k+1));
% Correzione del termine noto con le condizioni al bordo
F(1)=F(1) + c1(t(k+1))/(h^2);
F(end)=c2*h*2;
% Risoluzione del problema
u(2:end-1,k+1) = ((I+tau*A)\u(2:end-1,k))' + tau*F;
u(end,k+1)=u(end-2,k+1) + c2*2*h;
end

93
Exercise_03/NSSC_1.m Executable file
View File

@ -0,0 +1,93 @@
%% eulero forward DIrichlet
L=pi;
T=2;
f=@(x,t) 0*x.*t;
c1=@(t) 1+0*t;
c2=@(t) 0*t;
u0=@(x) 0*x;
D=0.5;
%uex=@(x,t) cos(x).*exp(t);
N=10;
K=200;
[x,t,u]=Dirichlet_EA(L,N,T,K,c1,c2,f,u0,D);
figure(1)
for ii=1:K+1
plot(x,u(:,ii)');
xlim([0 L])
pause(0.05);
end
space=linspace(0,L,101);
time=linspace(0,T,201);
[xx,yy]=meshgrid(time,space);
%exsol=uex(yy,xx);
figure(2)
mesh(t,x,u)
%figure(2)
%mesh(xx,yy,exsol)
%% Eulero forward Mixed BC
L=2*pi;
T=5;
f=@(x,t) 0*x.*t;
c1=@(t) 1+0*t;
c2=0;
u0=@(x) 0*x;
D=1.1;
%uex=@(x,t) cos(x).*exp(t);
N=25;
K=200;
[x,t,u]=Mixed_EA(L,N,T,K,c1,c2,f,u0,D);
figure(1)
for ii=1:K+1
plot(x,u(:,ii)');
xlim([0 L])
ylim([0 1.5])
pause(0.02);
end
space=linspace(0,L,101);
time=linspace(0,T,201);
[xx,yy]=meshgrid(time,space);
%exsol=uex(yy,xx);
figure(2)
mesh(t,x,u)
%figure(2)
%mesh(xx,yy,exsol)
%% Eulero Backward Mixed BC
L=2*pi;
T=5;
f=@(x,t) 0*x.*t;
c1=@(t) 1+0*t;
c2=0;
u0=@(x) 0*x;
D=1;
%uex=@(x,t) cos(x).*exp(t);
N=25;
K=200;
[x,t,u]=Mixed_EI(L,N,T,K,c1,c2,f,u0,D);
figure(1)
for ii=1:K+1
plot(x,u(:,ii)');
xlim([0 L])
ylim([0 1.5])
pause(0.02);
end
space=linspace(0,L,101);
time=linspace(0,T,201);
[xx,yy]=meshgrid(time,space);
%exsol=uex(yy,xx);
figure(2)
mesh(t,x,u)
%figure(2)
%mesh(xx,yy,exsol)