add: utils,

wip: ex_01 (almost done)
This commit is contained in:
Daniel Kapla 2022-03-13 19:07:39 +01:00
parent 644874f27f
commit e8e09b0637
2 changed files with 206 additions and 118 deletions

View File

@ -7,17 +7,13 @@
#include <iomanip> #include <iomanip>
#include <sstream> #include <sstream>
#include <functional> #include <functional>
#include <chrono>
#define _USE_MATH_DEFINES /* enables math constants from cmath */ #define _USE_MATH_DEFINES /* enables math constants from cmath */
#include <cmath> #include <cmath>
#ifdef USE_MPI #ifdef USE_MPI
#include <mpi.h> #include <mpi.h>
#endif #endif
#include <fstream>
#include <iomanip>
#include "Matrix.h" #include "Matrix.h"
#include "Solver.h" #include "Solver.h"
#include "utils.h" #include "utils.h"
@ -32,57 +28,69 @@ int main(int argn, char* argv[]) {
// Get MPI config // Get MPI config
int mpi_size; /*< MPI pool size (a.k.a. total number of processes) */ int mpi_size; /*< MPI pool size (a.k.a. total number of processes) */
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
// Get MPI rank
int mpi_world_rank; /*< MPI world rank (a.k.a. grid process ID) */
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_world_rank);
#else #else
int mpi_size = 1; int mpi_size = 1;
int mpi_world_rank = 0;
#endif #endif
/**************************** Parse Arguments *****************************/ /**************************** Parse Arguments *****************************/
size_t dim, resolution, iterations; if (0 < argn && argn < 4) {
{ std::cerr << "usage: " << argv[0] << " <resolution> <iterations>" << std::endl;
if (0 < argn && argn < 4) { return -1;
std::cerr << "usage: " << argv[0] << " <resolution> <iterations>" << std::endl; } else if (argn > 4) {
return -1; std::cerr << "warning: " << "ignoring all but the first three params" << std::endl;
} else if (argn > 4) { }
std::cerr << "warning: " << "ignoring all but the first three params" << std::endl; #ifdef USE_MPI
} size_t dim;
if (std::string(argv[1]) == "1D") { if (std::string(argv[1]) == "1D") {
dim = 1; dim = 1;
} else if (std::string(argv[1]) == "2D") { } else if (std::string(argv[1]) == "2D") {
dim = 2; dim = 2;
} else { } else {
std::cerr << "error: Parsing arg 1 <dim> failed" << std::endl; std::cerr << "error: Parsing arg 1 <dim> failed" << std::endl;
return -1; return -1;
} }
if (!(std::istringstream(argv[2]) >> resolution)) { #endif
std::cerr << "error: Parsing arg 2 <resolution> failed" << std::endl; size_t resolution;
return -1; if (!(std::istringstream(argv[2]) >> resolution)) {
} std::cerr << "error: Parsing arg 2 <resolution> failed" << std::endl;
if (!(std::istringstream(argv[3]) >> iterations)) { return -1;
std::cerr << "error: Parsing arg 3 <iterations> failed" << std::endl; }
return -1; size_t iterations;
} if (!(std::istringstream(argv[3]) >> iterations)) {
if (resolution < 10 || resolution > 65536) { std::cerr << "error: Parsing arg 3 <iterations> failed" << std::endl;
std::cerr << "error: arg 1 <resolution> " << resolution return -1;
<< " out of domain [10, 65536]" << std::endl; }
return -1; if (resolution < 10 || resolution > 65536) {
} std::cerr << "error: arg 1 <resolution> " << resolution
if (iterations > 65536) { << " out of domain [10, 65536]" << std::endl;
std::cerr << "error: arg 2 <iterations> " << iterations return -1;
<< "out of domain [0, 65536]" << std::endl; }
return -1; if (iterations > 65536) {
} std::cerr << "error: arg 2 <iterations> " << iterations
<< "out of domain [0, 65536]" << std::endl;
return -1;
} }
// Report configuration // Report configuration
std::cout << std::setfill(' ') if (mpi_world_rank == 0) {
std::cout << std::setfill(' ')
#ifdef USE_MPI #ifdef USE_MPI
<< "using MPI: true\n" << "use MPI: YES\n"
#else #else
<< "using MPI: false\n" << "use MPI: NO\n"
#endif #endif
<< "nr. processes: " << std::setw(5) << mpi_size << '\n' << "nr. processes: " << std::setw(5) << mpi_size << '\n'
<< "resolution: " << std::setw(5) << resolution << '\n' << "resolution: " << std::setw(5) << resolution << '\n'
<< "iterations: " << std::setw(5) << iterations << std::endl; << "iterations: " << std::setw(5) << iterations << std::endl;
}
/************************* Start Time Measurement *************************/
auto start = std::chrono::high_resolution_clock::now();
/**************** Setup (local) PDE + Boundary Conditions *****************/ /**************** Setup (local) PDE + Boundary Conditions *****************/
const double k = M_PI; const double k = M_PI;
@ -119,10 +127,6 @@ int main(int argn, char* argv[]) {
&mpi_comm_grid &mpi_comm_grid
); );
// Get MPI rank
int mpi_world_rank; /*< MPI world rank (a.k.a. grid process ID) */
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_world_rank);
// Get MPI rank with respect to the grid communicator // Get MPI rank with respect to the grid communicator
int mpi_grid_rank; /*< MPI grid rank (a.k.a. grid process ID) */ int mpi_grid_rank; /*< MPI grid rank (a.k.a. grid process ID) */
MPI_Comm_rank(mpi_comm_grid, &mpi_grid_rank); MPI_Comm_rank(mpi_comm_grid, &mpi_grid_rank);
@ -169,28 +173,6 @@ int main(int argn, char* argv[]) {
double ymax = (mpi_neighbours.north == MPI_PROC_NULL) ? 1.0 double ymax = (mpi_neighbours.north == MPI_PROC_NULL) ? 1.0
: h * (partition_sum(resolution, mpi_dims[1], mpi_coords[1]) + 1); : h * (partition_sum(resolution, mpi_dims[1], mpi_coords[1]) + 1);
// /*************************__________DEBUG__________*************************/
// std::cout << " (" << mpi_coords[0] << ", " << mpi_coords[1] << ") ";
// std::cout << " -> "
// << "N: " << ((mpi_neighbours.north != MPI_PROC_NULL) ? '1' : '.') << ", "
// << "E: " << ((mpi_neighbours.east != MPI_PROC_NULL) ? '1' : '.') << ", "
// << "S: " << ((mpi_neighbours.south != MPI_PROC_NULL) ? '1' : '.') << ", "
// << "W: " << ((mpi_neighbours.west != MPI_PROC_NULL) ? '1' : '.');
// std::cout << " -> "
// << nx << " x " << ny;
// std::cout << " -> " << std::setprecision(2)
// << "[" << std::setw(4) << std::left << xmin
// << ", " << std::setw(4) << std::left << xmax << "]"
// << " x "
// << "[" << std::setw(4) << std::left << ymin
// << ", " << std::setw(4) << std::left << ymax << "]";
// std::cout << std::endl;
// /*************************__________DEBUG__________*************************/
// Create MPI vector Type (for boundary condition exchange) // Create MPI vector Type (for boundary condition exchange)
// Allows directly exchange of matrix rows (north/south bounds) since the // Allows directly exchange of matrix rows (north/south bounds) since the
// row elements are "sparce" in the sence that they are not directly aside // row elements are "sparce" in the sence that they are not directly aside
@ -296,11 +278,6 @@ int main(int argn, char* argv[]) {
} }
/***************************** Solution Stats *****************************/ /***************************** Solution Stats *****************************/
std::cout
<< "|| residuals ||_2: " << std::setw(15) << solver.resid_norm()
<< "\n|| residuals ||_inf: " << std::setw(15) << solver.resid_norm<Max>()
<< std::endl;
// Get solution // Get solution
Matrix<double>& solution = solver.solution(); Matrix<double>& solution = solver.solution();
@ -314,51 +291,57 @@ int main(int argn, char* argv[]) {
} }
} }
// Calculate error
std::cout
<< "|| error ||_2: " << std::setw(15) << solution.dist(analytic)
<< "\n|| error ||_inf: " << std::setw(15) << solution.dist<Max>(analytic)
<< std::endl;
/*************************__________DEBUG__________*************************/
// Create R scripts for plotting the solution
std::ostringstream file_name;
#ifdef USE_MPI #ifdef USE_MPI
file_name << "Rplot_" << mpi_coords[0] << "_" << mpi_coords[1] << ".R"; // Frobenius Norm Accumulator
#else double frob_norm_sendbuf[2] = {
file_name << "Rplot_seriel.R"; solver.resid_norm(), solution.dist(analytic)
#endif };
std::ofstream out(file_name.str()); // Square the norms (Accumulation of partial results is the square root of
// the sum of the squared partial norms)
frob_norm_sendbuf[0] = frob_norm_sendbuf[0] * frob_norm_sendbuf[0];
frob_norm_sendbuf[1] = frob_norm_sendbuf[1] * frob_norm_sendbuf[1];
// Maximum Norm Accumulator
double max_norm_sendbuf[2] = {
solver.resid_norm<Max>(), solution.dist<Max>(analytic)
};
out << "sol <- matrix(c(" << solution(0); // Global result reduction buffers
for (size_t i = 1; i < solution.size(); ++i) { double frob_norm_recvbuf[2], max_norm_recvbuf[2];
out << ',' << solution(i);
// Accumulate global stats by sum/max reduction of local stats.
MPI_Reduce(frob_norm_sendbuf, frob_norm_recvbuf, 2, MPI_DOUBLE, MPI_SUM,
0, MPI_COMM_WORLD);
MPI_Reduce(max_norm_sendbuf, max_norm_recvbuf, 2, MPI_DOUBLE, MPI_MAX,
0, MPI_COMM_WORLD);
// Finish by taking the square root of the accumulated global
// squared frobenius norms
frob_norm_recvbuf[0] = std::sqrt(frob_norm_recvbuf[0]);
frob_norm_recvbuf[1] = std::sqrt(frob_norm_recvbuf[1]);
#else
double frob_norm_recvbuf[2] = {
solver.resid_norm(), solution.dist(analytic)
};
double max_norm_recvbuf[2] = {
solver.resid_norm<Max>(), solution.dist<Max>(analytic)
};
#endif
// calculate runtime time
auto stop = std::chrono::high_resolution_clock::now();
auto time = std::chrono::duration_cast<std::chrono::duration<double>>(stop - start)
.count();
// Report global stats (from "root" only)
if (mpi_world_rank == 0) {
std::cout
<< "Time [sec]: " << std::setw(15) << time
<< "\n|| residuals ||_2: " << std::setw(15) << frob_norm_recvbuf[0]
<< "\n|| residuals ||_inf: " << std::setw(15) << max_norm_recvbuf[0]
<< "\n|| error ||_2: " << std::setw(15) << frob_norm_recvbuf[1]
<< "\n|| error ||_inf: " << std::setw(15) << max_norm_recvbuf[1]
<< std::endl;
} }
out << "), " << nx << ", " << ny << ")\n"
#ifdef USE_MPI
<< "png(filename = \"mpi_plot_" << mpi_coords[0] <<
"_" << mpi_coords[1] << ".png\")\n"
#else
<< "png(filename = \"seriel_plot.png\")\n"
#endif
#ifdef USE_MPI
<< "image(sol, zlim = c(-270, 270), axes = FALSE, main = \"Cart Coords: "
<< mpi_coords[0] << ", " << mpi_coords[1] << "\")\n"
#else
<< "image(sol, zlim = c(-270, 270), axes = FALSE, main = \"Seriel\")\n"
#endif
<< "axis(1, at = c(0, 1), labels = c("
<< "\"" << std::setprecision(2) << xmin << "\", "
<< "\"" << std::setprecision(2) << xmax << "\"))\n"
<< "axis(2, at = c(0, 1), labels = c("
<< "\"" << std::setprecision(2) << ymin << "\", "
<< "\"" << std::setprecision(2) << ymax << "\"))\n"
// << "axis(2, at = seq(100, 800, by = 100))"
<< "dev.off()" << std::endl;
out.close();
/*************************__________DEBUG__________*************************/
// MPI shutdown/cleanup // MPI shutdown/cleanup
#ifdef USE_MPI #ifdef USE_MPI

105
Exercise_01/utils.h Normal file
View File

@ -0,0 +1,105 @@
/**
* Partitions an integer `num` into `div` summands and returns the `i`th
* of the partition.
*
* @example
* num = 17
* div = 5
*
* partition(17, 5, 0) -> 4
* partition(17, 5, 1) -> 4
* partition(17, 5, 2) -> 3
* partition(17, 5, 3) -> 3
* partition(17, 5, 5) -> 3
*
* 17 = num = div * num + num % div = 4 + 4 + 3 + 3 + 3
* 1st 2nd 3rd 4th 5th
* i=0 i=1 i=2 i=3 i=4
*/
int partition(int num, int div, int i) {
return num / div + static_cast<int>(i < (num % div));
}
/**
* Computes the partial sum of the first `i` integer `num` partitiones into
* `div` parts.
*
* @example
* num = 17
* div = 5
*
* partition_sum(17, 5, 0) -> 4
* partition_sum(17, 5, 1) -> 8
* partition_sum(17, 5, 2) -> 11
* partition_sum(17, 5, 3) -> 14
* partition_sum(17, 5, 5) -> 17
*/
int partition_sum(int num, int div, int i) {
int sum = 0;
for (int j = 0; j <= i; ++j) {
sum += partition(num, div, j);
}
return sum;
}
/**
* Factorized a integer number `num` into two multiplicative factors.
* These factors are as close together as possible. This means for example for
* square numbers that the two factors are the square root of `num`.
*
* Assumes small numbers and therefore uses a simple linear search.
*
* The first few integers are factorized as follows:
*
* 0 = 1 * 0
* 1 = 1 * 1
* 2 = 1 * 2 (is prime)
* 3 = 1 * 3 (is prime)
* 4 = 2 * 2 (is square)
* 5 = 1 * 5 (is prime)
* 6 = 2 * 3
* 7 = 1 * 7 (is prime)
* 8 = 2 * 4
* 9 = 3 * 3 (is square)
* 10 = 2 * 5
* 11 = 1 * 11 (is prime)
* 12 = 3 * 4
* 13 = 1 * 13 (is prime)
* 14 = 2 * 7
* 15 = 3 * 5
* 16 = 4 * 4 (is square)
*
* @param num integer to be factorized
* @param factor [out] output parameter of length 2 where the two factors are
* written into.
*
* @example
* int factors[2];
* two_factors(15, factors); // -> factors = {3, 5}
*/
void two_factors(int num, int* factors) {
// In case of zero, set both to zero
if (!num) {
factors[0] = factors[1] = 0;
}
// Ensure `num` is positive
if (num < 0) {
num *= -1;
}
// Set initial factorization (this always works)
factors[0] = 1;
factors[1] = num;
// Check all numbers `i` untill the integer square-root
for (int i = 2; i * i <= num; ++i) {
// Check if `i` is a divisor
if (!(num % i)) {
// Update factors as `i` divides `num`
factors[0] = i;
factors[1] = num / i;
}
}
}