2
0
Fork 0
CVE/CVE_C/man/plot.cve.Rd

49 lines
1.3 KiB
R

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plot.R
\name{plot.cve}
\alias{plot.cve}
\title{Loss distribution elbow plot.}
\usage{
\method{plot}{cve}(x, ...)
}
\arguments{
\item{x}{Object of class \code{"cve"} (result of [\code{\link{cve}}]).}
\item{...}{Pass through parameters to [\code{\link{plot}}] and
[\code{\link{lines}}]}
}
\description{
Boxplots of the loss from \code{min.dim} to \code{max.dim} \code{k} values.
}
\examples{
# create B for simulation
B <- cbind(rep(1, 6), (-1)^seq(6)) / sqrt(6)
set.seed(21)
# creat predictor data x ~ N(0, I_p)
X <- matrix(rnorm(600), 100)
# simulate response variable
# y = f(B'x) + err
# with f(x1, x2) = x1^2 + 2 x2 and err ~ N(0, 0.25^2)
Y <- (X \%*\% B[, 1])^2 + 2 * X \%*\% B[, 2] + rnorm(100, 0, .1)
# Create bandwidth estimation function
estimate.bandwidth <- function(X, k, nObs) {
n <- nrow(X)
p <- ncol(X)
X_c <- scale(X, center = TRUE, scale = FALSE)
2 * qchisq((nObs - 1) / (n - 1), k) * sum(X_c^2) / (n * p)
}
# calculate cve with method 'simple' for k = min.dim,...,max.dim
cve.obj.simple <- cve(Y ~ X, h = estimate.bandwidth, nObs = sqrt(nrow(X)))
# elbow plot
plot(cve.obj.simple)
}
\seealso{
see \code{\link{par}} for graphical parameters to pass through
as well as \code{\link{plot}}, the standard plot utility.
}