2
0
Fork 0
CVE/CVE_R/R/gradient.R

73 lines
2.3 KiB
R

#' Compute get gradient of `L(V)` given a dataset `X`.
#'
#' @param X Data matrix.
#' @param Y Responce.
#' @param V Position to compute the gradient at, aka point on Stiefl manifold.
#' @param h Bandwidth
#' @param loss.only Boolean to only compute the loss, of \code{TRUE} a single
#' value loss is returned and \code{envir} is ignored.
#' @keywords internal
#' @export
grad <- function(X, Y, V, h, loss.out = FALSE, loss.log = FALSE, loss.only = FALSE) {
# Get number of samples and dimension.
n <- nrow(X)
p <- ncol(X)
# Compute lookup indexes for symmetrie, lower/upper
# triangular parts and vectorization.
pair.index <- elem.pairs(seq(n))
i <- pair.index[, 1] # `i` indices of `(i, j)` pairs
j <- pair.index[, 2] # `j` indices of `(i, j)` pairs
# Matrix of vectorized indices. (vec(index) -> seq)
index <- matrix(seq(n * n), n, n)
lower <- index[lower.tri(index)]
upper <- t(index)[lower]
# Create all pairewise differences of rows of `X`.
X_diff <- X[i, , drop = F] - X[j, , drop = F]
# Projection matrix onto `span(V)`
Q <- diag(1, p) - (V %*% t(V))
# Vectorized distance matrix `D`.
vecD <- rowSums((X_diff %*% Q)^2)
# Weight matrix `W` (dnorm ... gaussean density function)
W <- matrix(dnorm(0), n, n)
W[lower] <- dnorm(vecD / h) # Set lower tri. part
W[upper] <- t(W)[upper] # Mirror lower tri. to upper
W <- sweep(W, 2, colSums(W), FUN = `/`) # Col-Normalize
# Weighted `Y` momentums
y1 <- Y %*% W # Result is 1D -> transposition irrelevant
y2 <- Y^2 %*% W
# Per example loss `L(V, X_i)`
L <- y2 - y1^2
if (loss.out | loss.log | loss.only) {
meanL <- mean(L)
if (loss.out) {
# Bubble environments up and write to loss variable, aka out param.
loss <<- meanL
}
if (loss.log) {
loss.history[epoch, attempt] <<- meanL
}
if (loss.only) {
# Mean for total loss `L(V)`.
return(meanL)
}
}
# Vectorized Weights with forced symmetry
vecS <- (L[i] - (Y[j] - y1[i])^2) * W[lower]
vecS <- vecS + ((L[j] - (Y[i] - y1[j])^2) * W[upper])
# Compute scaling of `X` row differences
vecS <- vecS * vecD
# The gradient.
G <- t(X_diff) %*% sweep(X_diff %*% V, 1, vecS, `*`)
G <- (-2 / (n * h^2)) * G
return(G)
}