2
0
Fork 0

Compare commits

..

No commits in common. "70ceccb599f286e17feb6504351ba106772393ff" and "1ac3b4c9e6b15cd18df1ff3366273102b3df9442" have entirely different histories.

22 changed files with 129 additions and 170 deletions

View File

@ -199,8 +199,6 @@ cve <- function(formula, data, method = "simple", max.dim = 10L, ...) {
#' below.
#' \item "weighted" variation with addaptive weighting of slices.
#' }
#' @param func_list a list of functions applied to \code{Y} to form the ensamble
#' CVE for central sub-space estimation.
#' @param k Dimension of lower dimensional projection, if \code{k} is given
#' only the specified dimension \code{B} matrix is estimated.
#' @param min.dim lower bounds for \code{k}, (ignored if \code{k} is supplied).
@ -253,7 +251,6 @@ cve <- function(formula, data, method = "simple", max.dim = 10L, ...) {
#' coef(cve.obj.simple2, k = 1)
#' @export
cve.call <- function(X, Y, method = "simple",
func_list = list(function (x) x),
nObs = sqrt(nrow(X)), h = NULL,
min.dim = 1L, max.dim = 10L, k = NULL,
momentum = 0.0, tau = 1.0, tol = 1e-3,
@ -378,11 +375,8 @@ cve.call <- function(X, Y, method = "simple",
}
}
# Evaluate each function given `Y` and build a `n x |func_list|` matrix.
Fy <- vapply(func_list, do.call, Y, list(Y))
# Convert numerical values to "double".
storage.mode(X) <- storage.mode(Fy) <- "double"
storage.mode(X) <- storage.mode(Y) <- "double"
if (is.function(logger)) {
loggerEnv <- environment(logger)
@ -402,7 +396,7 @@ cve.call <- function(X, Y, method = "simple",
}
dr.k <- .Call('cve_export', PACKAGE = 'CVE',
X, Fy, k, h,
X, Y, k, h,
method_nr,
V.init,
momentum, tau, tol,
@ -421,7 +415,6 @@ cve.call <- function(X, Y, method = "simple",
# augment result information
dr$X <- X
dr$Y <- Y
dr$Fy <- Fy
dr$method <- method
dr$call <- call
class(dr) <- "cve"

View File

@ -5,8 +5,8 @@ directions <- function(object, k, ...) {
#' Computes projected training data \code{X} for given dimension `k`.
#'
#' Returns \eqn{B'X}. That is, it computes the projection of the \eqn{n x p}
#' design matrix \eqn{X} on the column space of \eqn{B} of dimension \eqn{k}.
#' Returns \eqn{B'X}. That is the dimensional design matrix \eqn{X} on the
#' columnspace of the cve-estimate for given dimension \eqn{k}.
#'
#' @param object an object of class \code{"cve"}, usually, a result of a call to
#' \code{\link{cve}} or \code{\link{cve.call}}.

View File

@ -37,6 +37,7 @@
#' # calculate cve with method 'simple' for k = 1
#' set.seed(21)
#' cve.obj.simple <- cve(y ~ x, k = k)
#' print(cve.obj.simple$res$'1'$h)
#' print(estimate.bandwidth(x, k = k))
#' @export
estimate.bandwidth <- function (X, k, nObs, version = 1L) {

View File

@ -2,9 +2,9 @@
#'
#' Boxplots of the output \code{L} from \code{\link{cve}} over \code{k} from
#' \code{min.dim} to \code{max.dim}. For given \code{k}, \code{L} corresponds
#' to \eqn{L_n(V, X_i)} where \eqn{V} is the minimizer of \eqn{L_n(V)} where
#' \eqn{V} is an element of a Stiefel manifold (see
#' Fertl, L. and Bura, E. (2019)).
#' to \eqn{L_n(V, X_i)} where \eqn{V} is a stiefel manifold element as
#' minimizer of
#' \eqn{L_n(V)}, for further details see Fertl, L. and Bura, E. (2019).
#'
#' @param x an object of class \code{"cve"}, usually, a result of a call to
#' \code{\link{cve}} or \code{\link{cve.call}}.

View File

@ -1,7 +1,7 @@
#' Predict method for CVE Fits.
#'
#' Predict response using projected data. The forward model \eqn{g(B' X)} is
#' estimated with \code{\link{mars}} in the \code{\pkg{mda}} package.
#' Predict response using projected data \eqn{B'C} by fitting
#' \eqn{g(B'C) + \epsilon} using \code{\link{mars}}.
#'
#' @param object an object of class \code{"cve"}, usually, a result of a call to
#' \code{\link{cve}} or \code{\link{cve.call}}.
@ -9,7 +9,7 @@
#' @param k dimension of SDR space to be used for data projection.
#' @param ... further arguments passed to \code{\link{mars}}.
#'
#' @return prediced respone(s) for \code{newdata}.
#' @return prediced response at \code{newdata}.
#'
#' @examples
#' # create B for simulation

View File

@ -122,32 +122,31 @@ predict_dim_wilcoxon <- function(object, p.value = 0.05) {
))
}
#' Estimate Dimension of the Sufficient Reduction.
#' Estimate Dimension of Reduction Space.
#'
#' This function estimates the dimension, i.e. the rank of \eqn{B}. The default
#' method \code{'CV'} performs leave-one-out (LOO) cross-validation using
#' \code{mars} as follows for \code{k = min.dim, ..., max.dim} a
#' cross-validation via \code{mars} is
#' This function estimates the dimension of the mean dimension reduction space,
#' i.e. number of columns of \eqn{B} matrix. The default method \code{'CV'}
#' performs l.o.o cross-validation using \code{mars}. Given
#' \code{k = min.dim, ..., max.dim} a cross-validation via \code{mars} is
#' performed on the dataset \eqn{(Y_i, B_k' X_i)_{i = 1, ..., n}} where
#' \eqn{B_k} is the \eqn{p \times k}{p x k} dimensional CVE estimate. The
#' estimated SDR dimension is the \eqn{k} where the
#' cross-validation mean squared error is minimal. The method \code{'elbow'}
#' estimates the dimension via \eqn{k = argmin_k L_n(V_{p - k})} where
#' \eqn{V_{p - k}} is the space that is orthogonal to the column space of the
#' CVE estimate of \eqn{B_k}. Method \code{'wilcoxon'} finds the minimum using
#' the Wilcoxon test.
#' \eqn{V_{p - k}} is space that is orthogonal to the columns-space of the CVE estimate of \eqn{B_k}. Method \code{'wilcoxon'} is similar to \code{'elbow'}
#' but finds the minimum using the wilcoxon-test.
#'
#' @param object an object of class \code{"cve"}, usually, a result of a call to
#' \code{\link{cve}} or \code{\link{cve.call}}.
#' @param method This parameter specifies which method is used in dimension
#' estimation. It provides three options: \code{'CV'} (default),
#' \code{'elbow'} and \code{'wilcoxon'}.
#' @param method This parameter specify which method will be used in dimension
#' estimation. It provides three methods \code{'CV'} (default), \code{'elbow'},
#' and \code{'wilcoxon'} to estimate the dimension of the SDR.
#' @param ... ignored.
#'
#' @return A \code{list} with
#' @return list with
#' \describe{
#' \item{}{criterion for method and \code{k = min.dim, ..., max.dim}.}
#' \item{k}{estimated dimension is the minimizer of the criterion.}
#' \item{}{cretirion of method for \code{k = min.dim, ..., max.dim}.}
#' \item{k}{estimated dimension as argmin over \eqn{k} of criterion.}
#' }
#'
#' @examples

View File

@ -1,6 +1,7 @@
#' Prints summary statistics of the \eqn{L} \code{cve} component.
#' Prints a summary of a \code{cve} result.
#'
#' Prints a summary statistics of the \code{L} component of a \code{cve} object #' for \code{k = min.dim, ..., max.dim}.
#' Prints a summary statistics of output \code{L} from \code{cve} for
#' \code{k = min.dim, ..., max.dim}.
#'
#' @param object an object of class \code{"cve"}, usually, a result of a call to
#' \code{\link{cve}} or \code{\link{cve.call}}.

View File

@ -1,11 +1,9 @@
#' Random sample from Stiefel manifold.
#'
#' Draws a random sample from the invariant measure on the Stiefel manifold
#' Draws a sample from the invariant measure on the Stiefel manifold
#' \eqn{S(p, q)}.
#'
#' @param p row dimension
#' @param q col dimension
#' @return A \eqn{p \times q}{p x q} semi-orthogonal matrix.
#' @return \eqn{p \times q}{p x q} semi-orthogonal matrix.
#' @examples
#' V <- rStiefel(6, 4)
#' @export

View File

@ -4,26 +4,10 @@
\alias{cve.call}
\title{Conditional Variance Estimator (CVE).}
\usage{
cve.call(
X,
Y,
method = "simple",
func_list = list(function(x) x),
nObs = sqrt(nrow(X)),
h = NULL,
min.dim = 1L,
max.dim = 10L,
k = NULL,
momentum = 0,
tau = 1,
tol = 0.001,
slack = 0,
gamma = 0.5,
V.init = NULL,
max.iter = 50L,
attempts = 10L,
logger = NULL
)
cve.call(X, Y, method = "simple", nObs = sqrt(nrow(X)), h = NULL,
min.dim = 1L, max.dim = 10L, k = NULL, momentum = 0, tau = 1,
tol = 0.001, slack = 0, gamma = 0.5, V.init = NULL,
max.iter = 50L, attempts = 10L, logger = NULL)
}
\arguments{
\item{X}{Design predictor matrix.}
@ -37,9 +21,6 @@ cve.call(
\item "weighted" variation with addaptive weighting of slices.
}}
\item{func_list}{a list of functions applied to `Y` to form the ensamble
CVE for central sub-space estimation.}
\item{nObs}{parameter for choosing bandwidth \code{h} using
\code{\link{estimate.bandwidth}} (ignored if \code{h} is supplied).}

View File

@ -20,8 +20,8 @@ the \eqn{n\times k}{n x k} dimensional matrix \eqn{X B} where \eqn{B}
is the cve-estimate for dimension \eqn{k}.
}
\description{
Returns \eqn{B'X}. That is, it computes the projection of the \eqn{n x p}
design matrix \eqn{X} on the column space of \eqn{B} of dimension \eqn{k}.
Returns \eqn{B'X}. That is the dimensional design matrix \eqn{X} on the
columnspace of the cve-estimate for given dimension \eqn{k}.
}
\examples{
# create B for simulation (k = 1)

View File

@ -49,5 +49,6 @@ y <- x \%*\% B + 0.25 * rnorm(100)
# calculate cve with method 'simple' for k = 1
set.seed(21)
cve.obj.simple <- cve(y ~ x, k = k)
print(cve.obj.simple$res$'1'$h)
print(estimate.bandwidth(x, k = k))
}

View File

@ -16,9 +16,9 @@
\description{
Boxplots of the output \code{L} from \code{\link{cve}} over \code{k} from
\code{min.dim} to \code{max.dim}. For given \code{k}, \code{L} corresponds
to \eqn{L_n(V, X_i)} where \eqn{V} is the minimizer of \eqn{L_n(V)} where
\eqn{V} is an element of a Stiefel manifold (see
Fertl, L. and Bura, E. (2019)).
to \eqn{L_n(V, X_i)} where \eqn{V} is a stiefel manifold element as
minimizer of
\eqn{L_n(V)}, for further details see Fertl, L. and Bura, E. (2019).
}
\examples{
# create B for simulation

View File

@ -17,11 +17,11 @@
\item{...}{further arguments passed to \code{\link{mars}}.}
}
\value{
prediced respone(s) for \code{newdata}.
prediced response at \code{newdata}.
}
\description{
Predict response using projected data. The forward model \eqn{g(B' X)} is
estimated with \code{\link{mars}} in the \code{\pkg{mda}} package.
Predict response using projected data \eqn{B'C} by fitting
\eqn{g(B'C) + \epsilon} using \code{\link{mars}}.
}
\examples{
# create B for simulation

View File

@ -2,7 +2,7 @@
% Please edit documentation in R/predict_dim.R
\name{predict_dim}
\alias{predict_dim}
\title{Estimate Dimension of the Sufficient Reduction.}
\title{Estimate Dimension of Reduction Space.}
\usage{
predict_dim(object, ..., method = "CV")
}
@ -12,30 +12,29 @@ predict_dim(object, ..., method = "CV")
\item{...}{ignored.}
\item{method}{This parameter specifies which method is used in dimension
estimation. It provides three options: \code{'CV'} (default),
\code{'elbow'} and \code{'wilcoxon'}.}
\item{method}{This parameter specify which method will be used in dimension
estimation. It provides three methods \code{'CV'} (default), \code{'elbow'},
and \code{'wilcoxon'} to estimate the dimension of the SDR.}
}
\value{
A \code{list} with
list with
\describe{
\item{}{criterion for method and \code{k = min.dim, ..., max.dim}.}
\item{k}{estimated dimension is the minimizer of the criterion.}
\item{}{cretirion of method for \code{k = min.dim, ..., max.dim}.}
\item{k}{estimated dimension as argmin over \eqn{k} of criterion.}
}
}
\description{
This function estimates the dimension, i.e. the rank of \eqn{B}. The default
method \code{'CV'} performs leave-one-out (LOO) cross-validation using
\code{mars} as follows for \code{k = min.dim, ..., max.dim} a
cross-validation via \code{mars} is
This function estimates the dimension of the mean dimension reduction space,
i.e. number of columns of \eqn{B} matrix. The default method \code{'CV'}
performs l.o.o cross-validation using \code{mars}. Given
\code{k = min.dim, ..., max.dim} a cross-validation via \code{mars} is
performed on the dataset \eqn{(Y_i, B_k' X_i)_{i = 1, ..., n}} where
\eqn{B_k} is the \eqn{p \times k}{p x k} dimensional CVE estimate. The
estimated SDR dimension is the \eqn{k} where the
cross-validation mean squared error is minimal. The method \code{'elbow'}
estimates the dimension via \eqn{k = argmin_k L_n(V_{p - k})} where
\eqn{V_{p - k}} is the space that is orthogonal to the column space of the
CVE estimate of \eqn{B_k}. Method \code{'wilcoxon'} finds the minimum using
the Wilcoxon test.
\eqn{V_{p - k}} is space that is orthogonal to the columns-space of the CVE estimate of \eqn{B_k}. Method \code{'wilcoxon'} is similar to \code{'elbow'}
but finds the minimum using the wilcoxon-test.
}
\examples{
# create B for simulation

View File

@ -2,7 +2,8 @@
% Please edit documentation in R/util.R
\name{rStiefel}
\alias{rStiefel}
\title{Random sample from Stiefel manifold.}
\title{Draws a sample from the invariant measure on the Stiefel manifold
\eqn{S(p, q)}.}
\usage{
rStiefel(p, q)
}
@ -12,12 +13,12 @@ rStiefel(p, q)
\item{q}{col dimension}
}
\value{
A \eqn{p \times q}{p x q} semi-orthogonal matrix.
\eqn{p \times q}{p x q} semi-orthogonal matrix.
}
\description{
Draws a random sample from the invariant measure on the Stiefel manifold
Draws a sample from the invariant measure on the Stiefel manifold
\eqn{S(p, q)}.
}
\examples{
V <- rStiefel(6, 4)
V <- rStiefel(6, 4)
}

View File

@ -2,7 +2,7 @@
% Please edit documentation in R/summary.R
\name{summary.cve}
\alias{summary.cve}
\title{Prints summary statistics of the \eqn{L} \code{cve} component.}
\title{Prints a summary of a \code{cve} result.}
\usage{
\method{summary}{cve}(object, ...)
}
@ -13,7 +13,8 @@
\item{...}{ignored.}
}
\description{
Prints a summary statistics of the \code{L} component of a \code{cve} object #' for \code{k = min.dim, ..., max.dim}.
Prints a summary statistics of output \code{L} from \code{cve} for
\code{k = min.dim, ..., max.dim}.
}
\examples{
# create B for simulation

View File

@ -32,11 +32,11 @@ void callLogger(SEXP logger, SEXP env,
SEXP r_iter = PROTECT(ScalarInteger(iter + 1));
/* Create R representations of L, V and G */
SEXP r_L = PROTECT(allocMatrix(REALSXP, L->nrow, L->ncol));
SEXP r_L = PROTECT(allocVector(REALSXP, L->nrow));
SEXP r_V = PROTECT(allocMatrix(REALSXP, V->nrow, V->ncol));
SEXP r_G = PROTECT(allocMatrix(REALSXP, G->nrow, G->ncol));
/* Copy data to R objects */
memcpy(REAL(r_L), L->elem, L->nrow * L->ncol * sizeof(double));
memcpy(REAL(r_L), L->elem, L->nrow * sizeof(double));
memcpy(REAL(r_V), V->elem, V->nrow * V->ncol * sizeof(double));
memcpy(REAL(r_G), G->elem, G->nrow * G->ncol * sizeof(double));

View File

@ -2,7 +2,7 @@
#include "cve.h"
void cve(const mat *X, const mat *Fy, const double h,
void cve(const mat *X, const mat *Y, const double h,
const unsigned int method,
const double momentum,
const double tau_init, const double tol_init,
@ -24,14 +24,13 @@ void cve(const mat *X, const mat *Fy, const double h,
/* Create further intermediate or internal variables. */
mat *lvecD_e = (void*)0;
mat *Fy_sq = (void*)0;
mat *Ysquared = (void*)0;
mat *XV = (void*)0;
mat *lvecD = (void*)0; // TODO: combine. aka in-place lvecToSym
mat *D = (void*)0; // TODO: combine. aka in-place lvecToSym
mat *lvecK = (void*)0; // TODO: combine. aka in-place lvecToSym
mat *K = (void*)0; // TODO: combine. aka in-place lvecToSym
mat *colSumsK = (void*)0;
mat *rowSumsL = (void*)0;
mat *W = (void*)0;
mat *y1 = (void*)0;
mat *y2 = (void*)0;
@ -52,7 +51,7 @@ void cve(const mat *X, const mat *Fy, const double h,
double *workMem = (double*)R_alloc(workLen, sizeof(double));
lvecD_e = rowDiffSquareSums(X, lvecD_e);
Fy_sq = hadamard(1.0, Fy, Fy, 0.0, Fy_sq);
Ysquared = hadamard(1.0, Y, Y, 0.0, Ysquared);
do {
/* (Re)set learning rate. */
@ -78,26 +77,22 @@ void cve(const mat *X, const mat *Fy, const double h,
/* Normalize K columns to obtain weight matrix W */
W = colApply(K, '/', colSumsK, W);
/* first and second order weighted responces */
y1 = matrixprod(1.0, W, Fy, 0.0, y1);
y2 = matrixprod(1.0, W, Fy_sq, 0.0, y2);
y1 = matrixprod(1.0, W, Y, 0.0, y1);
y2 = matrixprod(1.0, W, Ysquared, 0.0, y2);
/* Compute losses */
L = hadamard(-1.0, y1, y1, 1.0, copy(y2, L));
/* Compute initial loss */
if (method == weighted) {
colSumsK = elemApply(colSumsK, '-', 1.0, colSumsK);
sumK = sum(colSumsK);
if (L->ncol == 1) {
loss_last = dot(L, '*', colSumsK) / sumK;
} else {
loss_last = dot(rowSums(L, rowSumsL), '*', colSumsK) / sumK;
}
c = agility / sumK;
/* Calculate the scaling matrix S */
S = laplace(adjacence(L, Fy, y1, D, K, gauss, S), workMem);
S = laplace(adjacence(L, Y, y1, D, K, gauss, S), workMem);
} else { /* simple */
loss_last = mean(L);
/* Calculate the scaling matrix S */
S = laplace(adjacence(L, Fy, y1, D, W, gauss, S), workMem);
S = laplace(adjacence(L, Y, y1, D, W, gauss, S), workMem);
}
/* Gradient */
tmp1 = matrixprod(1.0, S, X, 0.0, tmp1);
@ -137,19 +132,15 @@ void cve(const mat *X, const mat *Fy, const double h,
/* Normalize K columns to obtain weight matrix W */
W = colApply(K, '/', colSumsK, W);
/* first and second order weighted responces */
y1 = matrixprod(1.0, W, Fy, 0.0, y1);
y2 = matrixprod(1.0, W, Fy_sq, 0.0, y2);
y1 = matrixprod(1.0, W, Y, 0.0, y1);
y2 = matrixprod(1.0, W, Ysquared, 0.0, y2);
/* Compute losses */
L = hadamard(-1.0, y1, y1, 1.0, copy(y2, L));
/* Compute loss */
if (method == weighted) {
colSumsK = elemApply(colSumsK, '-', 1.0, colSumsK);
sumK = sum(colSumsK);
if (L->ncol == 1) {
loss = dot(L, '*', colSumsK) / sumK;
} else {
loss = dot(rowSums(L, rowSumsL), '*', colSumsK) / sumK;
}
} else { /* simple */
loss = mean(L);
}
@ -167,6 +158,9 @@ void cve(const mat *X, const mat *Fy, const double h,
/* Compute error, use workMem. */
err = dist(V, V_tau);
// Rprintf("%2d - iter: %2d, loss: %1.3f, err: %1.3f, tau: %1.3f, norm(G) = %1.3f\n",
// attempt, iter, loss, err, tau, sqrt(squareSum(G)));
/* Shift next step to current step and store loss to last. */
V = copy(V_tau, V);
loss_last = loss;
@ -183,11 +177,11 @@ void cve(const mat *X, const mat *Fy, const double h,
if (method == weighted) {
/* Calculate the scaling matrix S */
S = laplace(adjacence(L, Fy, y1, D, K, gauss, S), workMem);
S = laplace(adjacence(L, Y, y1, D, K, gauss, S), workMem);
c = agility / sumK; // n removed previousely
} else { /* simple */
/* Calculate the scaling matrix S */
S = laplace(adjacence(L, Fy, y1, D, W, gauss, S), workMem);
S = laplace(adjacence(L, Y, y1, D, W, gauss, S), workMem);
}
/* Gradient */
@ -200,6 +194,8 @@ void cve(const mat *X, const mat *Fy, const double h,
A = skew(tau, G, V, 0.0, A);
}
// Rprintf("\n");
/* Check if current attempt improved previous ones */
if (attempt == 0 || loss < loss_best) {
loss_best = loss;

View File

@ -106,29 +106,25 @@ mat* applyKernel(const mat* A, const double h, kernel kernel, mat* B) {
* n +--------------------+
*/
// TODO: fix: cache misses in Y?!
mat* adjacence(const mat *mat_L, const mat *mat_Fy, const mat *mat_y1,
mat* adjacence(const mat *vec_L, const mat *vec_Y, const mat *vec_y1,
const mat *mat_D, const mat *mat_W, kernel kernel,
mat *mat_S) {
int i, j, k, l, n = mat_L->nrow, m = mat_L->ncol;
int i, j, k, n = vec_L->nrow;
int block_size, block_batch_size;
int max_size = 64 < n ? 64 : n; // Block Size set to 64
double Y_j, t0, t1, t2, t3; // internal temp. values.
double *Y, *L, *y1;
double Y_j, tmp0, tmp1, tmp2, tmp3;
double *Y = vec_Y->elem;
double *L = vec_L->elem;
double *y1 = vec_y1->elem;
double *D, *W, *S;
// TODO: Check dims.
if (!mat_S) {
mat_S = zero(n, n);
} else {
memset(mat_S->elem, 0, n * n * sizeof(double));
mat_S = matrix(n, n);
}
for (l = 0; l < m; ++l) {
Y = mat_Fy->elem + l * n;
L = mat_L->elem + l * n;
y1 = mat_y1->elem + l * n;
for (i = 0; i < n; i += block_size) {
/* Set blocks (left upper corner) */
S = mat_S->elem + i;
@ -145,31 +141,23 @@ mat* adjacence(const mat *mat_L, const mat *mat_Fy, const mat *mat_y1,
Y_j = Y[j];
/* iterate over block rows */
for (k = 0; k < block_batch_size; k += 4) {
t0 = Y_j - y1[k];
t1 = Y_j - y1[k + 1];
t2 = Y_j - y1[k + 2];
t3 = Y_j - y1[k + 3];
S[k] += (L[k] - (t0 * t0)) * D[k] * W[k];
S[k + 1] += (L[k + 1] - (t1 * t1)) * D[k + 1] * W[k + 1];
S[k + 2] += (L[k + 2] - (t2 * t2)) * D[k + 2] * W[k + 2];
S[k + 3] += (L[k + 3] - (t3 * t3)) * D[k + 3] * W[k + 3];
tmp0 = Y_j - y1[k];
tmp1 = Y_j - y1[k + 1];
tmp2 = Y_j - y1[k + 2];
tmp3 = Y_j - y1[k + 3];
S[k] = (L[k] - (tmp0 * tmp0)) * D[k] * W[k];
S[k + 1] = (L[k + 1] - (tmp1 * tmp1)) * D[k + 1] * W[k + 1];
S[k + 2] = (L[k + 2] - (tmp2 * tmp2)) * D[k + 2] * W[k + 2];
S[k + 3] = (L[k + 3] - (tmp3 * tmp3)) * D[k + 3] * W[k + 3];
}
for (; k < block_size; ++k) {
t0 = Y_j - y1[k];
S[k] += (L[k] - (t0 * t0)) * D[k] * W[k];
tmp0 = Y_j - y1[k];
S[k] = (L[k] - (tmp0 * tmp0)) * D[k] * W[k];
}
}
L += block_size;
y1 += block_size;
}
}
if (m > 1) {
S = mat_S->elem;
for (i = 0; i < n * n; ++i) {
S[i] /= m;
}
}
return mat_S;
}

View File

@ -25,7 +25,7 @@ static mat* asMat(SEXP S) {
return M;
}
SEXP cve_export(SEXP X, SEXP Fy, SEXP k, SEXP h,
SEXP cve_export(SEXP X, SEXP Y, SEXP k, SEXP h,
SEXP method,
SEXP V, // initial
SEXP momentum, SEXP tau, SEXP tol,
@ -47,7 +47,7 @@ SEXP cve_export(SEXP X, SEXP Fy, SEXP k, SEXP h,
/* Create output list. */
SEXP Vout = PROTECT(allocMatrix(REALSXP, p, q));
SEXP Lout = PROTECT(allocMatrix(REALSXP, n, ncols(Fy)));
SEXP Lout = PROTECT(allocVector(REALSXP, n));
/* Check `attempts`, if not positive use passed values of `V` as
* optimization start value without further attempts.
@ -58,7 +58,7 @@ SEXP cve_export(SEXP X, SEXP Fy, SEXP k, SEXP h,
}
/* Call CVE */
cve(asMat(X), asMat(Fy), asReal(h),
cve(asMat(X), asMat(Y), asReal(h),
asInteger(method),
asReal(momentum), asReal(tau), asReal(tol),
asReal(slack), asReal(gamma),

View File

@ -4,7 +4,7 @@
#include <R_ext/Rdynload.h>
/* .Call calls */
extern SEXP cve_export(SEXP X, SEXP Fy, SEXP k, SEXP h,
extern SEXP cve_export(SEXP X, SEXP Y, SEXP k, SEXP h,
SEXP method,
SEXP V, // initial
SEXP momentum, SEXP tau, SEXP tol,