update: CVE paper,
add: predict_dim doc, altered method check to avid "may not initialized" warning
This commit is contained in:
parent
8761407cad
commit
b71898a5bc
|
@ -28,7 +28,7 @@ predict_dim_cv <- function(object) {
|
|||
k = as.integer(names(which.min(MSE)))
|
||||
))
|
||||
}
|
||||
# TODO: write doc
|
||||
|
||||
predict_dim_elbow <- function(object) {
|
||||
# extract original data from object (cve result)
|
||||
X <- object$X
|
||||
|
@ -122,24 +122,33 @@ predict_dim_wilcoxon <- function(object, p.value = 0.05) {
|
|||
))
|
||||
}
|
||||
|
||||
#' \code{"TODO: @Lukas"}
|
||||
#' Estimate Dimension of Reduction Space.
|
||||
#'
|
||||
#' This function estimates the dimension of the mean dimension reduction space,
|
||||
#' i.e. number of columns of \eqn{B} matrix. The default method \code{'CV'}
|
||||
#' performs cross-validation using \code{mars}. Given
|
||||
#' \code{k = min.dim, ..., max.dim} a cross-validation via \code{mars} is
|
||||
#' performed on the dataset \eqn{(Y i, B_k' X_i)_{i = 1, ..., n}} where
|
||||
#' \eqn{B_k} is the \eqn{p \times k}{p x k} dimensional CVE estimate given
|
||||
#' \eqn{k}. The estimated SDR dimension is the \eqn{k} where the
|
||||
#' cross-validation mean squared error is the lowest. The method \code{'elbow'}
|
||||
#' estimates the dimension via \eqn{k = argmin_k L_n(V_{p − k})} where
|
||||
#' \eqn{V_{p − k}} is the CVE estimate of the orthogonal columnspace of
|
||||
#' \eqn{B_k}. Method \code{'wilcoxon'} is similar to \code{'elbow'} but finds
|
||||
#' the minimum using the wilcoxon-test.
|
||||
#'
|
||||
#' @param object instance of class \code{cve} (result of \code{\link{cve}},
|
||||
#' \code{\link{cve.call}}).
|
||||
#' @param method one of \code{"CV"}, \code{"elbow"} or \code{"wilcoxon"}.
|
||||
#' @param method This parameter specify which method will be used in dimension
|
||||
#' estimation. It provides three methods \code{'CV'} (default), \code{'elbow'},
|
||||
#' and \code{'wilcoxon'} to estimate the dimension of the SDR.
|
||||
#' @param ... ignored.
|
||||
#'
|
||||
#' @return list with \code{"k"} the predicted dimension and method dependent
|
||||
#' informatoin.
|
||||
#'
|
||||
#' @section Method cv:
|
||||
#' TODO: \code{"TODO: @Lukas"}.
|
||||
#'
|
||||
#' @section Method elbow:
|
||||
#' TODO: \code{"TODO: @Lukas"}.
|
||||
#'
|
||||
#' @section Method wilcoxon:
|
||||
#' TODO: \code{"TODO: @Lukas"}.
|
||||
#' @return list with
|
||||
#' \describe{
|
||||
#' \item{}{cretirion of method for \code{k = min.dim, ..., max.dim}.}
|
||||
#' \item{k}{estimated dimension as argmin over \eqn{k} of criterion.}
|
||||
#' }
|
||||
#'
|
||||
#' @examples
|
||||
#' # create B for simulation
|
||||
|
|
Binary file not shown.
|
@ -2,7 +2,7 @@
|
|||
% Please edit documentation in R/predict_dim.R
|
||||
\name{predict_dim}
|
||||
\alias{predict_dim}
|
||||
\title{\code{"TODO: @Lukas"}}
|
||||
\title{Estimate Dimension of Reduction Space.}
|
||||
\usage{
|
||||
predict_dim(object, ..., method = "CV")
|
||||
}
|
||||
|
@ -12,30 +12,31 @@ predict_dim(object, ..., method = "CV")
|
|||
|
||||
\item{...}{ignored.}
|
||||
|
||||
\item{method}{one of \code{"CV"}, \code{"elbow"} or \code{"wilcoxon"}.}
|
||||
\item{method}{This parameter specify which method will be used in dimension
|
||||
estimation. It provides three methods \code{'CV'} (default), \code{'elbow'},
|
||||
and \code{'wilcoxon'} to estimate the dimension of the SDR.}
|
||||
}
|
||||
\value{
|
||||
list with \code{"k"} the predicted dimension and method dependent
|
||||
informatoin.
|
||||
list with
|
||||
\describe{
|
||||
\item{}{cretirion of method for \code{k = min.dim, ..., max.dim}.}
|
||||
\item{k}{estimated dimension as argmin over \eqn{k} of criterion.}
|
||||
}
|
||||
}
|
||||
\description{
|
||||
\code{"TODO: @Lukas"}
|
||||
This function estimates the dimension of the mean dimension reduction space,
|
||||
i.e. number of columns of \eqn{B} matrix. The default method \code{'CV'}
|
||||
performs cross-validation using \code{mars}. Given
|
||||
\code{k = min.dim, ..., max.dim} a cross-validation via \code{mars} is
|
||||
performed on the dataset \eqn{(Y i, B_k' X_i)_{i = 1, ..., n}} where
|
||||
\eqn{B_k} is the \eqn{p \times k}{p x k} dimensional CVE estimate given
|
||||
\eqn{k}. The estimated SDR dimension is the \eqn{k} where the
|
||||
cross-validation mean squared error is the lowest. The method \code{'elbow'}
|
||||
estimates the dimension via \eqn{k = argmin_k L_n(V_{p − k})} where
|
||||
\eqn{V_{p − k}} is the CVE estimate of the orthogonal columnspace of
|
||||
\eqn{B_k}. Method \code{'wilcoxon'} is similar to \code{'elbow'} but finds
|
||||
the minimum using the wilcoxon-test.
|
||||
}
|
||||
\section{Method cv}{
|
||||
|
||||
TODO: \code{"TODO: @Lukas"}.
|
||||
}
|
||||
|
||||
\section{Method elbow}{
|
||||
|
||||
TODO: \code{"TODO: @Lukas"}.
|
||||
}
|
||||
|
||||
\section{Method wilcoxon}{
|
||||
|
||||
TODO: \code{"TODO: @Lukas"}.
|
||||
}
|
||||
|
||||
\examples{
|
||||
# create B for simulation
|
||||
B <- rep(1, 5) / sqrt(5)
|
||||
|
|
|
@ -82,19 +82,17 @@ void cve(const mat *X, const mat *Y, const double h,
|
|||
/* Compute losses */
|
||||
L = hadamard(-1.0, y1, y1, 1.0, copy(y2, L));
|
||||
/* Compute initial loss */
|
||||
if (method == simple) {
|
||||
loss_last = mean(L);
|
||||
/* Calculate the scaling matrix S */
|
||||
S = laplace(adjacence(L, Y, y1, D, W, gauss, S), workMem);
|
||||
} else if (method == weighted) {
|
||||
if (method == weighted) {
|
||||
colSumsK = elemApply(colSumsK, '-', 1.0, colSumsK);
|
||||
sumK = sum(colSumsK);
|
||||
loss_last = dot(L, '*', colSumsK) / sumK;
|
||||
c = agility / sumK;
|
||||
/* Calculate the scaling matrix S */
|
||||
S = laplace(adjacence(L, Y, y1, D, K, gauss, S), workMem);
|
||||
} else {
|
||||
// TODO: error handling!
|
||||
} else { /* simple */
|
||||
loss_last = mean(L);
|
||||
/* Calculate the scaling matrix S */
|
||||
S = laplace(adjacence(L, Y, y1, D, W, gauss, S), workMem);
|
||||
}
|
||||
/* Gradient */
|
||||
tmp1 = matrixprod(1.0, S, X, 0.0, tmp1);
|
||||
|
@ -139,14 +137,12 @@ void cve(const mat *X, const mat *Y, const double h,
|
|||
/* Compute losses */
|
||||
L = hadamard(-1.0, y1, y1, 1.0, copy(y2, L));
|
||||
/* Compute loss */
|
||||
if (method == simple) {
|
||||
loss = mean(L);
|
||||
} else if (method == weighted) {
|
||||
if (method == weighted) {
|
||||
colSumsK = elemApply(colSumsK, '-', 1.0, colSumsK);
|
||||
sumK = sum(colSumsK);
|
||||
loss = dot(L, '*', colSumsK) / sumK;
|
||||
} else {
|
||||
// TODO: error handling!
|
||||
} else { /* simple */
|
||||
loss = mean(L);
|
||||
}
|
||||
|
||||
/* Check if step is appropriate, iff not reduce learning rate. */
|
||||
|
@ -179,15 +175,13 @@ void cve(const mat *X, const mat *Y, const double h,
|
|||
break;
|
||||
}
|
||||
|
||||
if (method == simple) {
|
||||
/* Calculate the scaling matrix S */
|
||||
S = laplace(adjacence(L, Y, y1, D, W, gauss, S), workMem);
|
||||
} else if (method == weighted) {
|
||||
if (method == weighted) {
|
||||
/* Calculate the scaling matrix S */
|
||||
S = laplace(adjacence(L, Y, y1, D, K, gauss, S), workMem);
|
||||
c = agility / sumK; // n removed previousely
|
||||
} else {
|
||||
// TODO: error handling!
|
||||
} else { /* simple */
|
||||
/* Calculate the scaling matrix S */
|
||||
S = laplace(adjacence(L, Y, y1, D, W, gauss, S), workMem);
|
||||
}
|
||||
|
||||
/* Gradient */
|
||||
|
|
Loading…
Reference in New Issue