parent
4d2651fe8a
commit
9e46a2d3d7
|
@ -0,0 +1,11 @@
|
|||
Package: CVE
|
||||
Type: Package
|
||||
Title: Conditional Variance Estimator for Sufficient Dimension Reduction
|
||||
Version: 0.1
|
||||
Date: 2019-08-29
|
||||
Author: Loki
|
||||
Maintainer: Loki <loki@no.mail>
|
||||
Description: Implementation of the Conditional Variance Estimation (CVE) method. This package version is writen in pure R.
|
||||
License: GPL-3
|
||||
Encoding: UTF-8
|
||||
RoxygenNote: 6.1.1
|
|
@ -0,0 +1,24 @@
|
|||
# Generated by roxygen2: do not edit by hand
|
||||
|
||||
S3method(plot,cve)
|
||||
S3method(summary,cve)
|
||||
export(cve)
|
||||
export(cve.call)
|
||||
export(cve.grid.search)
|
||||
export(cve_linesearch)
|
||||
export(cve_sgd)
|
||||
export(cve_simple)
|
||||
export(dataset)
|
||||
export(elem.pairs)
|
||||
export(estimate.bandwidth)
|
||||
export(grad)
|
||||
export(null)
|
||||
export(rStiefl)
|
||||
import(stats)
|
||||
importFrom(graphics,lines)
|
||||
importFrom(graphics,plot)
|
||||
importFrom(graphics,points)
|
||||
importFrom(stats,model.frame)
|
||||
importFrom(stats,rbinom)
|
||||
importFrom(stats,rnorm)
|
||||
useDynLib(CVE, .registration = TRUE)
|
|
@ -0,0 +1,223 @@
|
|||
#' Conditional Variance Estimator (CVE)
|
||||
#'
|
||||
#' Conditional Variance Estimator for Sufficient Dimension
|
||||
#' Reduction
|
||||
#'
|
||||
#' TODO: And some details
|
||||
#'
|
||||
#'
|
||||
#' @references Fertl Likas, Bura Efstathia. Conditional Variance Estimation for Sufficient Dimension Reduction, 2019
|
||||
#'
|
||||
#' @docType package
|
||||
#' @author Loki
|
||||
#' @useDynLib CVE, .registration = TRUE
|
||||
"_PACKAGE"
|
||||
|
||||
#' Implementation of the CVE method.
|
||||
#'
|
||||
#' Conditional Variance Estimator (CVE) is a novel sufficient dimension
|
||||
#' reduction (SDR) method assuming a model
|
||||
#' \deqn{Y \sim g(B'X) + \epsilon}{Y ~ g(B'X) + epsilon}
|
||||
#' where B'X is a lower dimensional projection of the predictors.
|
||||
#'
|
||||
#' @param formula Formel for the regression model defining `X`, `Y`.
|
||||
#' See: \code{\link{formula}}.
|
||||
#' @param data data.frame holding data for formula.
|
||||
#' @param method The different only differe in the used optimization.
|
||||
#' All of them are Gradient based optimization on a Stiefel manifold.
|
||||
#' \itemize{
|
||||
#' \item "simple" Simple reduction of stepsize.
|
||||
#' \item "sgd" stocastic gradient decent.
|
||||
#' \item TODO: further
|
||||
#' }
|
||||
#' @param ... Further parameters depending on the used method.
|
||||
#' @examples
|
||||
#' library(CVE)
|
||||
#'
|
||||
#' # sample dataset
|
||||
#' ds <- dataset("M5")
|
||||
#'
|
||||
#' # call ´cve´ with default method (aka "simple")
|
||||
#' dr.simple <- cve(ds$Y ~ ds$X, k = ncol(ds$B))
|
||||
#' # plot optimization history (loss via iteration)
|
||||
#' plot(dr.simple, main = "CVE M5 simple")
|
||||
#'
|
||||
#' # call ´cve´ with method "linesearch" using ´data.frame´ as data.
|
||||
#' data <- data.frame(Y = ds$Y, X = ds$X)
|
||||
#' # Note: ´Y, X´ are NOT defined, they are extracted from ´data´.
|
||||
#' dr.linesearch <- cve(Y ~ ., data, method = "linesearch", k = ncol(ds$B))
|
||||
#' plot(dr.linesearch, main = "CVE M5 linesearch")
|
||||
#'
|
||||
#' @references Fertl L., Bura E. Conditional Variance Estimation for Sufficient Dimension Reduction, 2019
|
||||
#'
|
||||
#' @seealso \code{\link{formula}}. For a complete parameters list (dependent on
|
||||
#' the method) see \code{\link{cve_simple}}, \code{\link{cve_sgd}}
|
||||
#' @import stats
|
||||
#' @importFrom stats model.frame
|
||||
#' @export
|
||||
cve <- function(formula, data, method = "simple", max.dim = 10, ...) {
|
||||
# check for type of `data` if supplied and set default
|
||||
if (missing(data)) {
|
||||
data <- environment(formula)
|
||||
} else if (!is.data.frame(data)) {
|
||||
stop('Parameter `data` must be a `data.frame` or missing.')
|
||||
}
|
||||
|
||||
# extract `X`, `Y` from `formula` with `data`
|
||||
model <- stats::model.frame(formula, data)
|
||||
X <- as.matrix(model[,-1, drop = FALSE])
|
||||
Y <- as.matrix(model[, 1, drop = FALSE])
|
||||
|
||||
# pass extracted data on to [cve.call()]
|
||||
dr <- cve.call(X, Y, method = method, ...)
|
||||
|
||||
# overwrite `call` property from [cve.call()]
|
||||
dr$call <- match.call()
|
||||
return(dr)
|
||||
}
|
||||
|
||||
#' @param nObs as describet in the Paper.
|
||||
#' @param X Data
|
||||
#' @param Y Responces
|
||||
#' @param nObs Like in the paper.
|
||||
#' @param k guess for SDR dimension.
|
||||
#' @param ... Method specific parameters.
|
||||
#' @rdname cve
|
||||
#' @export
|
||||
cve.call <- function(X, Y, method = "simple", nObs = nrow(X)^.5,
|
||||
min.dim = 1, max.dim = 10, k, ...) {
|
||||
|
||||
# parameter checking
|
||||
if (!is.matrix(X)) {
|
||||
stop('X should be a matrices.')
|
||||
}
|
||||
if (is.matrix(Y)) {
|
||||
Y <- as.vector(Y)
|
||||
}
|
||||
if (nrow(X) != length(Y)) {
|
||||
stop('Rows of X and number of Y elements are not compatible.')
|
||||
}
|
||||
if (ncol(X) < 2) {
|
||||
stop('X is one dimensional, no need for dimension reduction.')
|
||||
}
|
||||
|
||||
if (!missing(k)) {
|
||||
min.dim <- as.integer(k)
|
||||
max.dim <- as.integer(k)
|
||||
} else {
|
||||
min.dim <- as.integer(min.dim)
|
||||
max.dim <- as.integer(min(max.dim, ncol(X) - 1L))
|
||||
}
|
||||
if (min.dim > max.dim) {
|
||||
stop('`min.dim` bigger `max.dim`.')
|
||||
}
|
||||
if (max.dim >= ncol(X)) {
|
||||
stop('`max.dim` must be smaller than `ncol(X)`.')
|
||||
}
|
||||
|
||||
# Call specified method.
|
||||
method <- tolower(method)
|
||||
call <- match.call()
|
||||
dr <- list()
|
||||
for (k in min.dim:max.dim) {
|
||||
if (method == 'simple') {
|
||||
dr.k <- cve_simple(X, Y, k, nObs = nObs, ...)
|
||||
} else if (method == 'linesearch') {
|
||||
dr.k <- cve_linesearch(X, Y, k, nObs = nObs, ...)
|
||||
} else if (method == 'sgd') {
|
||||
dr.k <- cve_sgd(X, Y, k, nObs = nObs, ...)
|
||||
} else {
|
||||
stop('Got unknown method.')
|
||||
}
|
||||
dr.k$k <- k
|
||||
class(dr.k) <- "cve.k"
|
||||
dr[[k]] <- dr.k
|
||||
}
|
||||
|
||||
# augment result information
|
||||
dr$method <- method
|
||||
dr$call <- call
|
||||
class(dr) <- "cve"
|
||||
return(dr)
|
||||
}
|
||||
|
||||
# TODO: write summary
|
||||
# summary.cve <- function() {
|
||||
# # code #
|
||||
# }
|
||||
|
||||
#' Ploting helper for objects of class \code{cve}.
|
||||
#'
|
||||
#' @param x Object of class \code{cve} (result of [cve()]).
|
||||
#' @param content Specifies what to plot:
|
||||
#' \itemize{
|
||||
#' \item "history" Plots the loss history from stiefel optimization
|
||||
#' (default).
|
||||
#' \item ... TODO: add (if there are any)
|
||||
#' }
|
||||
#' @param ... Pass through parameters to [plot()] and [lines()]
|
||||
#'
|
||||
#' @usage ## S3 method for class 'cve'
|
||||
#' plot(x, content = "history", ...)
|
||||
#' @seealso see \code{\link{par}} for graphical parameters to pass through
|
||||
#' as well as \code{\link{plot}} for standard plot utility.
|
||||
#' @importFrom graphics plot lines points
|
||||
#' @method plot cve
|
||||
#' @export
|
||||
plot.cve <- function(x, ...) {
|
||||
|
||||
|
||||
# H <- x$history
|
||||
# H_1 <- H[!is.na(H[, 1]), 1]
|
||||
|
||||
# defaults <- list(
|
||||
# main = "History",
|
||||
# xlab = "Iterations i",
|
||||
# ylab = expression(loss == L[n](V^{(i)})),
|
||||
# xlim = c(1, nrow(H)),
|
||||
# ylim = c(0, max(H)),
|
||||
# type = "l"
|
||||
# )
|
||||
|
||||
# call.plot <- match.call()
|
||||
# keys <- names(defaults)
|
||||
# keys <- keys[match(keys, names(call.plot)[-1], nomatch = 0) == 0]
|
||||
|
||||
# for (key in keys) {
|
||||
# call.plot[[key]] <- defaults[[key]]
|
||||
# }
|
||||
|
||||
# call.plot[[1L]] <- quote(plot)
|
||||
# call.plot$x <- quote(1:length(H_1))
|
||||
# call.plot$y <- quote(H_1)
|
||||
|
||||
# eval(call.plot)
|
||||
|
||||
# if (ncol(H) > 1) {
|
||||
# for (i in 2:ncol(H)) {
|
||||
# H_i <- H[H[, i] > 0, i]
|
||||
# lines(1:length(H_i), H_i)
|
||||
# }
|
||||
# }
|
||||
# x.ends <- apply(H, 2, function(h) { length(h[!is.na(h)]) })
|
||||
# y.ends <- apply(H, 2, function(h) { tail(h[!is.na(h)], n=1) })
|
||||
# points(x.ends, y.ends)
|
||||
}
|
||||
|
||||
#' Prints a summary of a \code{cve} result.
|
||||
#' @param object Instance of 'cve' as return of \code{cve}.
|
||||
#' @method summary cve
|
||||
#' @export
|
||||
summary.cve <- function(object, ...) {
|
||||
cat('Summary of CVE result - Method: "', object$method, '"\n',
|
||||
'\n',
|
||||
'Dataset size: ', nrow(object$X), '\n',
|
||||
'Data Dimension: ', ncol(object$X), '\n',
|
||||
'SDR Dimension: ', object$k, '\n',
|
||||
'loss: ', object$loss, '\n',
|
||||
'\n',
|
||||
'Called via:\n',
|
||||
' ',
|
||||
sep='')
|
||||
print(object$call)
|
||||
}
|
|
@ -0,0 +1,169 @@
|
|||
#' Implementation of the CVE method using curvilinear linesearch with Armijo-Wolfe
|
||||
#' conditions.
|
||||
#'
|
||||
#' @keywords internal
|
||||
#' @export
|
||||
cve_linesearch <- function(X, Y, k,
|
||||
nObs = sqrt(nrow(X)),
|
||||
h = NULL,
|
||||
tau = 1.0,
|
||||
tol = 1e-3,
|
||||
rho1 = 0.1,
|
||||
rho2 = 0.9,
|
||||
slack = 0,
|
||||
epochs = 50L,
|
||||
attempts = 10L,
|
||||
max.linesearch.iter = 10L,
|
||||
logger = NULL
|
||||
) {
|
||||
# Set `grad` functions environment to enable if to find this environments
|
||||
# local variabels, needed to enable the manipulation of this local variables
|
||||
# from within `grad`.
|
||||
environment(grad) <- environment()
|
||||
|
||||
# Get dimensions.
|
||||
n <- nrow(X)
|
||||
p <- ncol(X)
|
||||
q <- p - k
|
||||
|
||||
# Save initial learning rate `tau`.
|
||||
tau.init <- tau
|
||||
# Addapt tolearance for break condition.
|
||||
tol <- sqrt(2 * q) * tol
|
||||
|
||||
# Estaimate bandwidth if not given.
|
||||
if (missing(h) | !is.numeric(h)) {
|
||||
h <- estimate.bandwidth(X, k, nObs)
|
||||
}
|
||||
|
||||
# Compute persistent data.
|
||||
# Compute lookup indexes for symmetrie, lower/upper
|
||||
# triangular parts and vectorization.
|
||||
pair.index <- elem.pairs(seq(n))
|
||||
i <- pair.index[1, ] # `i` indices of `(i, j)` pairs
|
||||
j <- pair.index[2, ] # `j` indices of `(i, j)` pairs
|
||||
# Matrix of vectorized indices. (vec(index) -> seq)
|
||||
index <- matrix(seq(n * n), n, n)
|
||||
lower <- index[lower.tri(index)]
|
||||
upper <- t(index)[lower]
|
||||
|
||||
# Create all pairewise differences of rows of `X`.
|
||||
X_diff <- X[i, , drop = F] - X[j, , drop = F]
|
||||
# Identity matrix.
|
||||
I_p <- diag(1, p)
|
||||
|
||||
# Init tracking of current best (according multiple attempts).
|
||||
V.best <- NULL
|
||||
loss.best <- Inf
|
||||
|
||||
# Start loop for multiple attempts.
|
||||
for (attempt in 1:attempts) {
|
||||
|
||||
# Sample a `(p, q)` dimensional matrix from the stiefel manifold as
|
||||
# optimization start value.
|
||||
V <- rStiefl(p, q)
|
||||
|
||||
# Initial loss and gradient.
|
||||
loss <- Inf
|
||||
G <- grad(X, Y, V, h, loss.out = TRUE, persistent = TRUE)
|
||||
# Set last loss (aka, loss after applying the step).
|
||||
loss.last <- loss
|
||||
|
||||
# Call logger with initial values before starting optimization.
|
||||
if (is.function(logger)) {
|
||||
epoch <- 0 # Set epoch count to 0 (only relevant for logging).
|
||||
error <- NA
|
||||
logger(environment())
|
||||
}
|
||||
|
||||
## Start optimization loop.
|
||||
for (epoch in 1:epochs) {
|
||||
|
||||
# Cayley transform matrix `A`
|
||||
A <- (G %*% t(V)) - (V %*% t(G))
|
||||
|
||||
# Directional derivative of the loss at current position, given
|
||||
# as `Tr(G^T \cdot A \cdot V)`.
|
||||
loss.prime <- -0.5 * norm(A, type = 'F')^2
|
||||
|
||||
# Linesearch
|
||||
tau.upper <- Inf
|
||||
tau.lower <- 0
|
||||
tau <- tau.init
|
||||
for (iter in 1:max.linesearch.iter) {
|
||||
# Apply learning rate `tau`.
|
||||
A.tau <- (tau / 2) * A
|
||||
# Parallet transport (on Stiefl manifold) into direction of `G`.
|
||||
inv <- solve(I_p + A.tau)
|
||||
V.tau <- inv %*% ((I_p - A.tau) %*% V)
|
||||
|
||||
# Loss at position after a step.
|
||||
loss <- Inf # aka loss.tau
|
||||
G.tau <- grad(X, Y, V.tau, h, loss.out = TRUE, persistent = TRUE)
|
||||
|
||||
# Armijo condition.
|
||||
if (loss > loss.last + (rho1 * tau * loss.prime)) {
|
||||
tau.upper <- tau
|
||||
tau <- (tau.lower + tau.upper) / 2
|
||||
next()
|
||||
}
|
||||
|
||||
V.prime.tau <- -0.5 * inv %*% A %*% (V + V.tau)
|
||||
loss.prime.tau <- sum(G * V.prime.tau) # Tr(grad(tau)^T \cdot Y^'(tau))
|
||||
|
||||
# Wolfe condition.
|
||||
if (loss.prime.tau < rho2 * loss.prime) {
|
||||
tau.lower <- tau
|
||||
if (tau.upper == Inf) {
|
||||
tau <- 2 * tau.lower
|
||||
} else {
|
||||
tau <- (tau.lower + tau.upper) / 2
|
||||
}
|
||||
} else {
|
||||
break()
|
||||
}
|
||||
}
|
||||
|
||||
# Compute error.
|
||||
error <- norm(V %*% t(V) - V.tau %*% t(V.tau), type = "F")
|
||||
|
||||
# Check break condition (epoch check to skip ignored gradient calc).
|
||||
# Note: the devision by `sqrt(2 * k)` is included in `tol`.
|
||||
if (error < tol | epoch >= epochs) {
|
||||
# take last step and stop optimization.
|
||||
V <- V.tau
|
||||
# Final call to the logger before stopping optimization
|
||||
if (is.function(logger)) {
|
||||
G <- G.tau
|
||||
logger(environment())
|
||||
}
|
||||
break()
|
||||
}
|
||||
|
||||
# Perform the step and remember previous loss.
|
||||
V <- V.tau
|
||||
loss.last <- loss
|
||||
G <- G.tau
|
||||
|
||||
# Log after taking current step.
|
||||
if (is.function(logger)) {
|
||||
logger(environment())
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
# Check if current attempt improved previous ones
|
||||
if (loss < loss.best) {
|
||||
loss.best <- loss
|
||||
V.best <- V
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return(list(
|
||||
loss = loss.best,
|
||||
V = V.best,
|
||||
B = null(V.best),
|
||||
h = h
|
||||
))
|
||||
}
|
|
@ -0,0 +1,129 @@
|
|||
#' Simple implementation of the CVE method. 'Simple' means that this method is
|
||||
#' a classic GD method unsing no further tricks.
|
||||
#'
|
||||
#' @keywords internal
|
||||
#' @export
|
||||
cve_sgd <- function(X, Y, k,
|
||||
nObs = sqrt(nrow(X)),
|
||||
h = NULL,
|
||||
tau = 0.01,
|
||||
tol = 1e-3,
|
||||
epochs = 50L,
|
||||
batch.size = 16L,
|
||||
attempts = 10L,
|
||||
logger = NULL
|
||||
) {
|
||||
# Set `grad` functions environment to enable if to find this environments
|
||||
# local variabels, needed to enable the manipulation of this local variables
|
||||
# from within `grad`.
|
||||
environment(grad) <- environment()
|
||||
|
||||
# Get dimensions.
|
||||
n <- nrow(X) # Number of samples.
|
||||
p <- ncol(X) # Data dimensions
|
||||
q <- p - k # Complement dimension of the SDR space.
|
||||
|
||||
# Save initial learning rate `tau`.
|
||||
tau.init <- tau
|
||||
# Addapt tolearance for break condition.
|
||||
tol <- sqrt(2 * q) * tol
|
||||
|
||||
# Estaimate bandwidth if not given.
|
||||
if (missing(h) || !is.numeric(h)) {
|
||||
h <- estimate.bandwidth(X, k, nObs)
|
||||
}
|
||||
|
||||
# Compute persistent data.
|
||||
# Compute lookup indexes for symmetrie, lower/upper
|
||||
# triangular parts and vectorization.
|
||||
pair.index <- elem.pairs(seq(n))
|
||||
i <- pair.index[1, ] # `i` indices of `(i, j)` pairs
|
||||
j <- pair.index[2, ] # `j` indices of `(i, j)` pairs
|
||||
# Index of vectorized matrix, for lower and upper triangular part.
|
||||
lower <- ((i - 1) * n) + j
|
||||
upper <- ((j - 1) * n) + i
|
||||
|
||||
# Create all pairewise differences of rows of `X`.
|
||||
X_diff <- X[i, , drop = F] - X[j, , drop = F]
|
||||
# Identity matrix.
|
||||
I_p <- diag(1, p)
|
||||
# Init a list of data indices (shuffled for batching).
|
||||
indices <- seq(n)
|
||||
|
||||
# Init tracking of current best (according multiple attempts).
|
||||
V.best <- NULL
|
||||
loss.best <- Inf
|
||||
|
||||
# Start loop for multiple attempts.
|
||||
for (attempt in 1:attempts) {
|
||||
# Reset learning rate `tau`.
|
||||
tau <- tau.init
|
||||
|
||||
# Sample a `(p, q)` dimensional matrix from the stiefel manifold as
|
||||
# optimization start value.
|
||||
V <- rStiefl(p, q)
|
||||
# Keep track of last `V` for computing error after an epoch.
|
||||
V.last <- V
|
||||
|
||||
if (is.function(logger)) {
|
||||
loss <- grad(X, Y, V, h, loss.only = TRUE, persistent = TRUE)
|
||||
error <- NA
|
||||
epoch <- 0
|
||||
logger(environment())
|
||||
}
|
||||
|
||||
# Repeat `epochs` times
|
||||
for (epoch in 1:epochs) {
|
||||
# Shuffle batches
|
||||
batch.shuffle <- sample(indices)
|
||||
|
||||
# Make a step for each batch.
|
||||
for (batch.start in seq(1, n, batch.size)) {
|
||||
# Select batch data indices.
|
||||
batch.end <- min(batch.start + batch.size - 1, length(batch.shuffle))
|
||||
batch <- batch.shuffle[batch.start:batch.end]
|
||||
|
||||
# Compute batch gradient.
|
||||
loss <- NULL
|
||||
G <- grad(X[batch, ], Y[batch], V, h, loss.out = TRUE)
|
||||
|
||||
# Cayley transform matrix.
|
||||
A <- (G %*% t(V)) - (V %*% t(G))
|
||||
|
||||
# Apply learning rate `tau`.
|
||||
A.tau <- tau * A
|
||||
# Parallet transport (on Stiefl manifold) into direction of `G`.
|
||||
V <- solve(I_p + A.tau) %*% ((I_p - A.tau) %*% V)
|
||||
}
|
||||
# And the error for the history.
|
||||
error <- norm(V.last %*% t(V.last) - V %*% t(V), type = "F")
|
||||
V.last <- V
|
||||
|
||||
if (is.function(logger)) {
|
||||
# Compute loss at end of epoch for logging.
|
||||
loss <- grad(X, Y, V, h, loss.only = TRUE, persistent = TRUE)
|
||||
logger(environment())
|
||||
}
|
||||
|
||||
# Check break condition.
|
||||
if (error < tol) {
|
||||
break()
|
||||
}
|
||||
}
|
||||
# Compute actual loss after finishing for comparing multiple attempts.
|
||||
loss <- grad(X, Y, V, h, loss.only = TRUE, persistent = TRUE)
|
||||
|
||||
# After each attempt, check if last attempt reached a better result.
|
||||
if (loss < loss.best) {
|
||||
loss.best <- loss
|
||||
V.best <- V
|
||||
}
|
||||
}
|
||||
|
||||
return(list(
|
||||
loss = loss.best,
|
||||
V = V.best,
|
||||
B = null(V.best),
|
||||
h = h
|
||||
))
|
||||
}
|
|
@ -0,0 +1,141 @@
|
|||
#' Simple implementation of the CVE method. 'Simple' means that this method is
|
||||
#' a classic GD method unsing no further tricks.
|
||||
#'
|
||||
#' @keywords internal
|
||||
#' @export
|
||||
cve_simple <- function(X, Y, k,
|
||||
nObs = sqrt(nrow(X)),
|
||||
h = NULL,
|
||||
tau = 1.0,
|
||||
tol = 1e-3,
|
||||
slack = 0,
|
||||
epochs = 50L,
|
||||
attempts = 10L,
|
||||
logger = NULL
|
||||
) {
|
||||
# Set `grad` functions environment to enable if to find this environments
|
||||
# local variabels, needed to enable the manipulation of this local variables
|
||||
# from within `grad`.
|
||||
environment(grad) <- environment()
|
||||
|
||||
# Get dimensions.
|
||||
n <- nrow(X) # Number of samples.
|
||||
p <- ncol(X) # Data dimensions
|
||||
q <- p - k # Complement dimension of the SDR space.
|
||||
|
||||
# Save initial learning rate `tau`.
|
||||
tau.init <- tau
|
||||
# Addapt tolearance for break condition.
|
||||
tol <- sqrt(2 * q) * tol
|
||||
|
||||
# Estaimate bandwidth if not given.
|
||||
if (missing(h) || !is.numeric(h)) {
|
||||
h <- estimate.bandwidth(X, k, nObs)
|
||||
}
|
||||
|
||||
# Compute persistent data.
|
||||
# Compute lookup indexes for symmetrie, lower/upper
|
||||
# triangular parts and vectorization.
|
||||
pair.index <- elem.pairs(seq(n))
|
||||
i <- pair.index[1, ] # `i` indices of `(i, j)` pairs
|
||||
j <- pair.index[2, ] # `j` indices of `(i, j)` pairs
|
||||
# Index of vectorized matrix, for lower and upper triangular part.
|
||||
lower <- ((i - 1) * n) + j
|
||||
upper <- ((j - 1) * n) + i
|
||||
|
||||
# Create all pairewise differences of rows of `X`.
|
||||
X_diff <- X[i, , drop = F] - X[j, , drop = F]
|
||||
# Identity matrix.
|
||||
I_p <- diag(1, p)
|
||||
|
||||
# Init tracking of current best (according multiple attempts).
|
||||
V.best <- NULL
|
||||
loss.best <- Inf
|
||||
|
||||
# Start loop for multiple attempts.
|
||||
for (attempt in 1:attempts) {
|
||||
# Reset learning rate `tau`.
|
||||
tau <- tau.init
|
||||
|
||||
# Sample a `(p, q)` dimensional matrix from the stiefel manifold as
|
||||
# optimization start value.
|
||||
V <- rStiefl(p, q)
|
||||
|
||||
# Initial loss and gradient.
|
||||
loss <- Inf
|
||||
G <- grad(X, Y, V, h, loss.out = TRUE, persistent = TRUE)
|
||||
# Set last loss (aka, loss after applying the step).
|
||||
loss.last <- loss
|
||||
|
||||
# Cayley transform matrix `A`
|
||||
A <- (G %*% t(V)) - (V %*% t(G))
|
||||
|
||||
# Call logger with initial values before starting optimization.
|
||||
if (is.function(logger)) {
|
||||
epoch <- 0 # Set epoch count to 0 (only relevant for logging).
|
||||
error <- NA
|
||||
logger(environment())
|
||||
}
|
||||
|
||||
## Start optimization loop.
|
||||
for (epoch in 1:epochs) {
|
||||
# Apply learning rate `tau`.
|
||||
A.tau <- tau * A
|
||||
# Parallet transport (on Stiefl manifold) into direction of `G`.
|
||||
V.tau <- solve(I_p + A.tau) %*% ((I_p - A.tau) %*% V)
|
||||
|
||||
# Loss at position after a step.
|
||||
loss <- grad(X, Y, V.tau, h, loss.only = TRUE, persistent = TRUE)
|
||||
|
||||
# Check if step is appropriate, iff not reduce learning rate.
|
||||
if ((loss - loss.last) > slack * loss.last) {
|
||||
tau <- tau / 2
|
||||
next() # Keep position and try with smaller `tau`.
|
||||
}
|
||||
|
||||
# Compute error.
|
||||
error <- norm(V %*% t(V) - V.tau %*% t(V.tau), type = "F")
|
||||
|
||||
# Check break condition (epoch check to skip ignored gradient calc).
|
||||
# Note: the devision by `sqrt(2 * k)` is included in `tol`.
|
||||
if (error < tol || epoch >= epochs) {
|
||||
# take last step and stop optimization.
|
||||
V <- V.tau
|
||||
# Call logger last time befor stoping.
|
||||
if (is.function(logger)) {
|
||||
logger(environment())
|
||||
}
|
||||
break()
|
||||
}
|
||||
|
||||
# Perform the step and remember previous loss.
|
||||
V <- V.tau
|
||||
loss.last <- loss
|
||||
|
||||
# Call logger after taking a step.
|
||||
if (is.function(logger)) {
|
||||
logger(environment())
|
||||
}
|
||||
|
||||
# Compute gradient at new position.
|
||||
G <- grad(X, Y, V, h, persistent = TRUE)
|
||||
|
||||
# Cayley transform matrix `A`
|
||||
A <- (G %*% t(V)) - (V %*% t(G))
|
||||
}
|
||||
|
||||
# Check if current attempt improved previous ones
|
||||
if (loss < loss.best) {
|
||||
loss.best <- loss
|
||||
V.best <- V
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return(list(
|
||||
loss = loss.best,
|
||||
V = V.best,
|
||||
B = null(V.best),
|
||||
h = h
|
||||
))
|
||||
}
|
|
@ -0,0 +1,109 @@
|
|||
#' Generates test datasets.
|
||||
#'
|
||||
#' Provides sample datasets. There are 5 different datasets named
|
||||
#' M1, M2, M3, M4 and M5 describet in the paper references below.
|
||||
#' The general model is given by:
|
||||
#' \deqn{Y ~ g(B'X) + \epsilon}
|
||||
#'
|
||||
#' @param name One of \code{"M1"}, \code{"M2"}, \code{"M3"}, \code{"M4"} or \code{"M5"}
|
||||
#' @param n nr samples
|
||||
#' @param p Dim. of random variable \code{X}.
|
||||
#' @param p.mix Only for \code{"M4"}, see: below.
|
||||
#' @param lambda Only for \code{"M4"}, see: below.
|
||||
#'
|
||||
#' @return List with elements
|
||||
#' \itemize{
|
||||
#' \item{X}{data}
|
||||
#' \item{Y}{response}
|
||||
#' \item{B}{Used dim-reduction matrix}
|
||||
#' \item{name}{Name of the dataset (name parameter)}
|
||||
#' }
|
||||
#'
|
||||
#' @section M1:
|
||||
#' The data follows \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} for a subspace
|
||||
#' dimension of \eqn{k = 2} with a default of \eqn{n = 200} data points.
|
||||
#' The link function \eqn{g} is given as
|
||||
#' \deqn{g(x) = \frac{x_1}{0.5 + (x_2 + 1.5)^2} + 0.5\epsilon}{g(x) = x_1 / (0.5 + (x_2 + 1.5)^2) + 0.5 epsilon}
|
||||
#' @section M2:
|
||||
#' \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} with \eqn{k = 2} with a default of \eqn{n = 200} data points.
|
||||
#' The link function \eqn{g} is given as
|
||||
#' \deqn{g(x) = x_1 x_2^2 + 0.5\epsilon}{g(x) = x_1 x_2^2 + 0.5 epsilon}
|
||||
#' @section M3:
|
||||
#' TODO:
|
||||
#' @section M4:
|
||||
#' TODO:
|
||||
#' @section M5:
|
||||
#' TODO:
|
||||
#'
|
||||
#' @import stats
|
||||
#' @importFrom stats rnorm rbinom
|
||||
#' @export
|
||||
dataset <- function(name = "M1", n, B, p.mix = 0.3, lambda = 1.0) {
|
||||
# validate parameters
|
||||
stopifnot(name %in% c("M1", "M2", "M3", "M4", "M5"))
|
||||
|
||||
# set default values if not supplied
|
||||
if (missing(n)) {
|
||||
n <- if (name %in% c("M1", "M2")) 200 else if (name != "M5") 100 else 42
|
||||
}
|
||||
if (missing(B)) {
|
||||
p <- 12
|
||||
if (name == "M1") {
|
||||
B <- cbind(
|
||||
c( 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0),
|
||||
c( 1,-1, 1,-1, 1,-1, 0, 0, 0, 0, 0, 0)
|
||||
) / sqrt(6)
|
||||
} else if (name == "M2") {
|
||||
B <- cbind(
|
||||
c(c(1, 0), rep(0, 10)),
|
||||
c(c(0, 1), rep(0, 10))
|
||||
)
|
||||
} else {
|
||||
B <- matrix(c(rep(1 / sqrt(6), 6), rep(0, 6)), 12, 1)
|
||||
}
|
||||
} else {
|
||||
p <- dim(B)[1]
|
||||
# validate col. nr to match dataset `k = dim(B)[2]`
|
||||
stopifnot(
|
||||
name %in% c("M1", "M2") && dim(B)[2] == 2,
|
||||
name %in% c("M3", "M4", "M5") && dim(B)[2] == 1
|
||||
)
|
||||
}
|
||||
|
||||
# set link function `g` for model `Y ~ g(B'X) + epsilon`
|
||||
if (name == "M1") {
|
||||
g <- function(BX) { BX[1] / (0.5 + (BX[2] + 1.5)^2) }
|
||||
} else if (name == "M2") {
|
||||
g <- function(BX) { BX[1] * BX[2]^2 }
|
||||
} else if (name %in% c("M3", "M4")) {
|
||||
g <- function(BX) { cos(BX[1]) }
|
||||
} else { # name == "M5"
|
||||
g <- function(BX) { 2 * log(abs(BX[1]) + 1) }
|
||||
}
|
||||
|
||||
# compute X
|
||||
if (name != "M4") {
|
||||
# compute root of the covariance matrix according the dataset
|
||||
if (name %in% c("M1", "M3")) {
|
||||
# Variance-Covariance structure for `X ~ N_p(0, \Sigma)` with
|
||||
# `\Sigma_{i, j} = 0.5^{|i - j|}`.
|
||||
Sigma <- matrix(0.5^abs(kronecker(1:p, 1:p, '-')), p, p)
|
||||
# decompose Sigma to Sigma.root^T Sigma.root = Sigma for usage in creation of `X`
|
||||
Sigma.root <- chol(Sigma)
|
||||
} else { # name %in% c("M2", "M5")
|
||||
Sigma.root <- diag(rep(1, p)) # d-dim identity
|
||||
}
|
||||
# data `X` as multivariate random normal variable with
|
||||
# variance matrix `Sigma`.
|
||||
X <- replicate(p, rnorm(n, 0, 1)) %*% Sigma.root
|
||||
} else { # name == "M4"
|
||||
X <- t(replicate(100, rep((1 - 2 * rbinom(1, 1, p.mix)) * lambda, p) + rnorm(p, 0, 1)))
|
||||
}
|
||||
|
||||
# responce `y ~ g(B'X) + epsilon` with `epsilon ~ N(0, 1 / 2)`
|
||||
Y <- apply(X, 1, function(X_i) {
|
||||
g(t(B) %*% X_i) + rnorm(1, 0, 0.5)
|
||||
})
|
||||
|
||||
return(list(X = X, Y = Y, B = B, name = name))
|
||||
}
|
|
@ -0,0 +1,27 @@
|
|||
#' Estimated bandwidth for CVE.
|
||||
#'
|
||||
#' Estimates a propper bandwidth \code{h} according
|
||||
#' \deqn{%
|
||||
#' h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)\frac{2 tr(\Sigma)}{p}}{%
|
||||
#' h = qchisq( (nObs - 1)/(n - 1), p - q ) 2 tr(Sigma) / p}
|
||||
#'
|
||||
#' @param X data matrix of dimension (n x p) with n data points X_i of dimension
|
||||
#' q. Therefor each row represents a datapoint of dimension p.
|
||||
#' @param k Guess for rank(B).
|
||||
#' @param nObs Ether numeric of a function. If specified as numeric value
|
||||
#' its used in the computation of the bandwidth directly. If its a function
|
||||
#' `nObs` is evaluated as \code{nObs(nrow(x))}. The default behaviou if not
|
||||
#' supplied at all is to use \code{nObs <- nrow(x)^0.5}.
|
||||
#'
|
||||
#' @seealso [\code{\link{qchisq}}]
|
||||
#' @export
|
||||
estimate.bandwidth <- function(X, k, nObs) {
|
||||
n <- nrow(X)
|
||||
p <- ncol(X)
|
||||
|
||||
X_centered <- scale(X, center=TRUE, scale=FALSE)
|
||||
Sigma <- (1 / n) * t(X_centered) %*% X_centered
|
||||
|
||||
quantil <- qchisq((nObs - 1) / (n - 1), k)
|
||||
return(2 * quantil * sum(diag(Sigma)) / p)
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
#' Compute get gradient of `L(V)` given a dataset `X`.
|
||||
#'
|
||||
#' @param X Data matrix.
|
||||
#' @param Y Responce.
|
||||
#' @param V Position to compute the gradient at, aka point on Stiefl manifold.
|
||||
#' @param h Bandwidth
|
||||
#' @param loss.out Iff \code{TRUE} loss will be written to parent environment.
|
||||
#' @param loss.only Boolean to only compute the loss, of \code{TRUE} a single
|
||||
#' value loss is returned and \code{envir} is ignored.
|
||||
#' @param persistent Determines if data indices and dependent calculations shall
|
||||
#' be reused from the parent environment. ATTENTION: Do NOT set this flag, only
|
||||
#' intended for internal usage by carefully aligned functions!
|
||||
#' @keywords internal
|
||||
#' @export
|
||||
grad <- function(X, Y, V, h,
|
||||
loss.out = FALSE,
|
||||
loss.only = FALSE,
|
||||
persistent = FALSE) {
|
||||
# Get number of samples and dimension.
|
||||
n <- nrow(X)
|
||||
p <- ncol(X)
|
||||
|
||||
if (!persistent) {
|
||||
# Compute lookup indexes for symmetrie, lower/upper
|
||||
# triangular parts and vectorization.
|
||||
pair.index <- elem.pairs(seq(n))
|
||||
i <- pair.index[1, ] # `i` indices of `(i, j)` pairs
|
||||
j <- pair.index[2, ] # `j` indices of `(i, j)` pairs
|
||||
# Index of vectorized matrix, for lower and upper triangular part.
|
||||
lower <- ((i - 1) * n) + j
|
||||
upper <- ((j - 1) * n) + i
|
||||
|
||||
# Create all pairewise differences of rows of `X`.
|
||||
X_diff <- X[i, , drop = F] - X[j, , drop = F]
|
||||
}
|
||||
|
||||
out <- .Call("grad_c", PACKAGE = "CVE",
|
||||
X, X_diff, as.double(Y), V, as.double(h));
|
||||
|
||||
if (loss.only) {
|
||||
return(out$loss)
|
||||
}
|
||||
if (loss.out) {
|
||||
loss <<- out$loss
|
||||
}
|
||||
|
||||
return(out$G)
|
||||
}
|
|
@ -0,0 +1,43 @@
|
|||
|
||||
#' Performs a grid search for parameters over a parameter grid.
|
||||
#' @examples
|
||||
#' args <- list(
|
||||
#' h = c(0.05, 0.1, 0.2),
|
||||
#' method = c("simple", "sgd"),
|
||||
#' tau = c(0.5, 0.1, 0.01)
|
||||
#' )
|
||||
#' cve.grid.search(args)
|
||||
#' @export
|
||||
cve.grid.search <- function(X, Y, k, args) {
|
||||
|
||||
args$stringsAsFactors = FALSE
|
||||
args$KEEP.OUT.ATTRS = FALSE
|
||||
grid <- do.call(expand.grid, args)
|
||||
grid.length <- length(grid[[1]])
|
||||
|
||||
print(grid)
|
||||
|
||||
for (i in 1:grid.length) {
|
||||
arguments <- as.list(grid[i, ])
|
||||
# Set required arguments
|
||||
arguments$X <- X
|
||||
arguments$Y <- Y
|
||||
arguments$k <- k
|
||||
# print(arguments)
|
||||
dr <- do.call(cve.call, arguments)
|
||||
print(dr$loss)
|
||||
}
|
||||
}
|
||||
|
||||
# ds <- dataset()
|
||||
# X <- ds$X
|
||||
# Y <- ds$Y
|
||||
# (k <- ncol(ds$B))
|
||||
# args <- list(
|
||||
# h = c(0.05, 0.1, 0.2),
|
||||
# method = c("simple", "sgd"),
|
||||
# tau = c(0.5, 0.1, 0.01),
|
||||
# attempts = c(1L)
|
||||
# )
|
||||
|
||||
# cve.grid.search(X, Y, k, args)
|
|
@ -0,0 +1,40 @@
|
|||
#' Samples uniform from the Stiefel Manifold
|
||||
#'
|
||||
#' @param p row dim.
|
||||
#' @param q col dim.
|
||||
#' @return `(p, q)` semi-orthogonal matrix
|
||||
#' @examples
|
||||
#' V <- rStiefel(6, 4)
|
||||
#' @export
|
||||
rStiefl <- function(p, q) {
|
||||
return(qr.Q(qr(matrix(rnorm(p * q, 0, 1), p, q))))
|
||||
}
|
||||
|
||||
#' Null space basis of given matrix `V`
|
||||
#'
|
||||
#' @param V `(p, q)` matrix
|
||||
#' @return Semi-orthogonal `(p, p - q)` matrix spaning the null space of `V`.
|
||||
#' @keywords internal
|
||||
#' @export
|
||||
null <- function(V) {
|
||||
tmp <- qr(V)
|
||||
set <- if(tmp$rank == 0L) seq_len(ncol(V)) else -seq_len(tmp$rank)
|
||||
return(qr.Q(tmp, complete=TRUE)[, set, drop=FALSE])
|
||||
}
|
||||
|
||||
#' Creates a (numeric) matrix where each column contains
|
||||
#' an element to element matching.
|
||||
#' @param elements numeric vector of elements to match
|
||||
#' @return matrix of size `(2, n * (n - 1) / 2)` for a argument of lenght `n`.
|
||||
#' @keywords internal
|
||||
#' @examples
|
||||
#' elem.pairs(seq.int(2, 5))
|
||||
#' @export
|
||||
elem.pairs <- function(elements) {
|
||||
# Number of elements to match.
|
||||
n <- length(elements)
|
||||
# Create all combinations.
|
||||
pairs <- rbind(rep(elements, each=n), rep(elements, n))
|
||||
# Select unique combinations without self interaction.
|
||||
return(pairs[, pairs[1, ] < pairs[2, ]])
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,20 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/CVE.R
|
||||
\docType{package}
|
||||
\name{CVE-package}
|
||||
\alias{CVE}
|
||||
\alias{CVE-package}
|
||||
\title{Conditional Variance Estimator (CVE)}
|
||||
\description{
|
||||
Conditional Variance Estimator for Sufficient Dimension
|
||||
Reduction
|
||||
}
|
||||
\details{
|
||||
TODO: And some details
|
||||
}
|
||||
\references{
|
||||
Fertl Likas, Bura Efstathia. Conditional Variance Estimation for Sufficient Dimension Reduction, 2019
|
||||
}
|
||||
\author{
|
||||
Loki
|
||||
}
|
|
@ -0,0 +1,71 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/CVE.R
|
||||
\name{cve}
|
||||
\alias{cve}
|
||||
\alias{cve.call}
|
||||
\title{Implementation of the CVE method.}
|
||||
\usage{
|
||||
cve(formula, data, method = "simple", max.dim = 10, ...)
|
||||
|
||||
cve.call(X, Y, method = "simple", nObs = nrow(X)^0.5, min.dim = 1,
|
||||
max.dim = 10, k, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{formula}{Formel for the regression model defining `X`, `Y`.
|
||||
See: \code{\link{formula}}.}
|
||||
|
||||
\item{data}{data.frame holding data for formula.}
|
||||
|
||||
\item{method}{The different only differe in the used optimization.
|
||||
All of them are Gradient based optimization on a Stiefel manifold.
|
||||
\itemize{
|
||||
\item "simple" Simple reduction of stepsize.
|
||||
\item "sgd" stocastic gradient decent.
|
||||
\item TODO: further
|
||||
}}
|
||||
|
||||
\item{...}{Further parameters depending on the used method.}
|
||||
|
||||
\item{X}{Data}
|
||||
|
||||
\item{Y}{Responces}
|
||||
|
||||
\item{nObs}{as describet in the Paper.}
|
||||
|
||||
\item{k}{guess for SDR dimension.}
|
||||
|
||||
\item{nObs}{Like in the paper.}
|
||||
|
||||
\item{...}{Method specific parameters.}
|
||||
}
|
||||
\description{
|
||||
Conditional Variance Estimator (CVE) is a novel sufficient dimension
|
||||
reduction (SDR) method assuming a model
|
||||
\deqn{Y \sim g(B'X) + \epsilon}{Y ~ g(B'X) + epsilon}
|
||||
where B'X is a lower dimensional projection of the predictors.
|
||||
}
|
||||
\examples{
|
||||
library(CVE)
|
||||
|
||||
# sample dataset
|
||||
ds <- dataset("M5")
|
||||
|
||||
# call ´cve´ with default method (aka "simple")
|
||||
dr.simple <- cve(ds$Y ~ ds$X, k = ncol(ds$B))
|
||||
# plot optimization history (loss via iteration)
|
||||
plot(dr.simple, main = "CVE M5 simple")
|
||||
|
||||
# call ´cve´ with method "linesearch" using ´data.frame´ as data.
|
||||
data <- data.frame(Y = ds$Y, X = ds$X)
|
||||
# Note: ´Y, X´ are NOT defined, they are extracted from ´data´.
|
||||
dr.linesearch <- cve(Y ~ ., data, method = "linesearch", k = ncol(ds$B))
|
||||
plot(dr.linesearch, main = "CVE M5 linesearch")
|
||||
|
||||
}
|
||||
\references{
|
||||
Fertl L., Bura E. Conditional Variance Estimation for Sufficient Dimension Reduction, 2019
|
||||
}
|
||||
\seealso{
|
||||
\code{\link{formula}}. For a complete parameters list (dependent on
|
||||
the method) see \code{\link{cve_simple}}, \code{\link{cve_sgd}}
|
||||
}
|
|
@ -0,0 +1,19 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/gridSearch.R
|
||||
\name{cve.grid.search}
|
||||
\alias{cve.grid.search}
|
||||
\title{Performs a grid search for parameters over a parameter grid.}
|
||||
\usage{
|
||||
cve.grid.search(X, Y, k, args)
|
||||
}
|
||||
\description{
|
||||
Performs a grid search for parameters over a parameter grid.
|
||||
}
|
||||
\examples{
|
||||
args <- list(
|
||||
h = c(0.05, 0.1, 0.2),
|
||||
method = c("simple", "sgd"),
|
||||
tau = c(0.5, 0.1, 0.01)
|
||||
)
|
||||
cve.grid.search(args)
|
||||
}
|
|
@ -0,0 +1,16 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/cve_linesearch.R
|
||||
\name{cve_linesearch}
|
||||
\alias{cve_linesearch}
|
||||
\title{Implementation of the CVE method using curvilinear linesearch with Armijo-Wolfe
|
||||
conditions.}
|
||||
\usage{
|
||||
cve_linesearch(X, Y, k, nObs = sqrt(nrow(X)), h = NULL, tau = 1,
|
||||
tol = 0.001, rho1 = 0.1, rho2 = 0.9, slack = 0, epochs = 50L,
|
||||
attempts = 10L, max.linesearch.iter = 10L, logger = NULL)
|
||||
}
|
||||
\description{
|
||||
Implementation of the CVE method using curvilinear linesearch with Armijo-Wolfe
|
||||
conditions.
|
||||
}
|
||||
\keyword{internal}
|
|
@ -0,0 +1,16 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/cve_sgd.R
|
||||
\name{cve_sgd}
|
||||
\alias{cve_sgd}
|
||||
\title{Simple implementation of the CVE method. 'Simple' means that this method is
|
||||
a classic GD method unsing no further tricks.}
|
||||
\usage{
|
||||
cve_sgd(X, Y, k, nObs = sqrt(nrow(X)), h = NULL, tau = 0.01,
|
||||
tol = 0.001, epochs = 50L, batch.size = 16L, attempts = 10L,
|
||||
logger = NULL)
|
||||
}
|
||||
\description{
|
||||
Simple implementation of the CVE method. 'Simple' means that this method is
|
||||
a classic GD method unsing no further tricks.
|
||||
}
|
||||
\keyword{internal}
|
|
@ -0,0 +1,16 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/cve_simple.R
|
||||
\name{cve_simple}
|
||||
\alias{cve_simple}
|
||||
\title{Simple implementation of the CVE method. 'Simple' means that this method is
|
||||
a classic GD method unsing no further tricks.}
|
||||
\usage{
|
||||
cve_simple(X, Y, k, nObs = sqrt(nrow(X)), h = NULL, tau = 1,
|
||||
tol = 0.001, slack = 0, epochs = 50L, attempts = 10L,
|
||||
logger = NULL)
|
||||
}
|
||||
\description{
|
||||
Simple implementation of the CVE method. 'Simple' means that this method is
|
||||
a classic GD method unsing no further tricks.
|
||||
}
|
||||
\keyword{internal}
|
|
@ -0,0 +1,64 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/datasets.R
|
||||
\name{dataset}
|
||||
\alias{dataset}
|
||||
\title{Generates test datasets.}
|
||||
\usage{
|
||||
dataset(name = "M1", n, B, p.mix = 0.3, lambda = 1)
|
||||
}
|
||||
\arguments{
|
||||
\item{name}{One of \code{"M1"}, \code{"M2"}, \code{"M3"}, \code{"M4"} or \code{"M5"}}
|
||||
|
||||
\item{n}{nr samples}
|
||||
|
||||
\item{p.mix}{Only for \code{"M4"}, see: below.}
|
||||
|
||||
\item{lambda}{Only for \code{"M4"}, see: below.}
|
||||
|
||||
\item{p}{Dim. of random variable \code{X}.}
|
||||
}
|
||||
\value{
|
||||
List with elements
|
||||
\itemize{
|
||||
\item{X}{data}
|
||||
\item{Y}{response}
|
||||
\item{B}{Used dim-reduction matrix}
|
||||
\item{name}{Name of the dataset (name parameter)}
|
||||
}
|
||||
}
|
||||
\description{
|
||||
Provides sample datasets. There are 5 different datasets named
|
||||
M1, M2, M3, M4 and M5 describet in the paper references below.
|
||||
The general model is given by:
|
||||
\deqn{Y ~ g(B'X) + \epsilon}
|
||||
}
|
||||
\section{M1}{
|
||||
|
||||
The data follows \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} for a subspace
|
||||
dimension of \eqn{k = 2} with a default of \eqn{n = 200} data points.
|
||||
The link function \eqn{g} is given as
|
||||
\deqn{g(x) = \frac{x_1}{0.5 + (x_2 + 1.5)^2} + 0.5\epsilon}{g(x) = x_1 / (0.5 + (x_2 + 1.5)^2) + 0.5 epsilon}
|
||||
}
|
||||
|
||||
\section{M2}{
|
||||
|
||||
\eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} with \eqn{k = 2} with a default of \eqn{n = 200} data points.
|
||||
The link function \eqn{g} is given as
|
||||
\deqn{g(x) = x_1 x_2^2 + 0.5\epsilon}{g(x) = x_1 x_2^2 + 0.5 epsilon}
|
||||
}
|
||||
|
||||
\section{M3}{
|
||||
|
||||
TODO:
|
||||
}
|
||||
|
||||
\section{M4}{
|
||||
|
||||
TODO:
|
||||
}
|
||||
|
||||
\section{M5}{
|
||||
|
||||
TODO:
|
||||
}
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/util.R
|
||||
\name{elem.pairs}
|
||||
\alias{elem.pairs}
|
||||
\title{Creates a (numeric) matrix where each column contains
|
||||
an element to element matching.}
|
||||
\usage{
|
||||
elem.pairs(elements)
|
||||
}
|
||||
\arguments{
|
||||
\item{elements}{numeric vector of elements to match}
|
||||
}
|
||||
\value{
|
||||
matrix of size `(2, n * (n - 1) / 2)` for a argument of lenght `n`.
|
||||
}
|
||||
\description{
|
||||
Creates a (numeric) matrix where each column contains
|
||||
an element to element matching.
|
||||
}
|
||||
\examples{
|
||||
elem.pairs(seq.int(2, 5))
|
||||
}
|
||||
\keyword{internal}
|
|
@ -0,0 +1,28 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/estimateBandwidth.R
|
||||
\name{estimate.bandwidth}
|
||||
\alias{estimate.bandwidth}
|
||||
\title{Estimated bandwidth for CVE.}
|
||||
\usage{
|
||||
estimate.bandwidth(X, k, nObs)
|
||||
}
|
||||
\arguments{
|
||||
\item{X}{data matrix of dimension (n x p) with n data points X_i of dimension
|
||||
q. Therefor each row represents a datapoint of dimension p.}
|
||||
|
||||
\item{k}{Guess for rank(B).}
|
||||
|
||||
\item{nObs}{Ether numeric of a function. If specified as numeric value
|
||||
its used in the computation of the bandwidth directly. If its a function
|
||||
`nObs` is evaluated as \code{nObs(nrow(x))}. The default behaviou if not
|
||||
supplied at all is to use \code{nObs <- nrow(x)^0.5}.}
|
||||
}
|
||||
\description{
|
||||
Estimates a propper bandwidth \code{h} according
|
||||
\deqn{%
|
||||
h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)\frac{2 tr(\Sigma)}{p}}{%
|
||||
h = qchisq( (nObs - 1)/(n - 1), p - q ) 2 tr(Sigma) / p}
|
||||
}
|
||||
\seealso{
|
||||
[\code{\link{qchisq}}]
|
||||
}
|
|
@ -0,0 +1,31 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/gradient.R
|
||||
\name{grad}
|
||||
\alias{grad}
|
||||
\title{Compute get gradient of `L(V)` given a dataset `X`.}
|
||||
\usage{
|
||||
grad(X, Y, V, h, loss.out = FALSE, loss.only = FALSE,
|
||||
persistent = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
\item{X}{Data matrix.}
|
||||
|
||||
\item{Y}{Responce.}
|
||||
|
||||
\item{V}{Position to compute the gradient at, aka point on Stiefl manifold.}
|
||||
|
||||
\item{h}{Bandwidth}
|
||||
|
||||
\item{loss.out}{Iff \code{TRUE} loss will be written to parent environment.}
|
||||
|
||||
\item{loss.only}{Boolean to only compute the loss, of \code{TRUE} a single
|
||||
value loss is returned and \code{envir} is ignored.}
|
||||
|
||||
\item{persistent}{Determines if data indices and dependent calculations shall
|
||||
be reused from the parent environment. ATTENTION: Do NOT set this flag, only
|
||||
intended for internal usage by carefully aligned functions!}
|
||||
}
|
||||
\description{
|
||||
Compute get gradient of `L(V)` given a dataset `X`.
|
||||
}
|
||||
\keyword{internal}
|
|
@ -0,0 +1,18 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/util.R
|
||||
\name{null}
|
||||
\alias{null}
|
||||
\title{Null space basis of given matrix `V`}
|
||||
\usage{
|
||||
null(V)
|
||||
}
|
||||
\arguments{
|
||||
\item{V}{`(p, q)` matrix}
|
||||
}
|
||||
\value{
|
||||
Semi-orthogonal `(p, p - q)` matrix spaning the null space of `V`.
|
||||
}
|
||||
\description{
|
||||
Null space basis of given matrix `V`
|
||||
}
|
||||
\keyword{internal}
|
|
@ -0,0 +1,28 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/CVE.R
|
||||
\name{plot.cve}
|
||||
\alias{plot.cve}
|
||||
\title{Ploting helper for objects of class \code{cve}.}
|
||||
\usage{
|
||||
## S3 method for class 'cve'
|
||||
plot(x, content = "history", ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{Object of class \code{cve} (result of [cve()]).}
|
||||
|
||||
\item{...}{Pass through parameters to [plot()] and [lines()]}
|
||||
|
||||
\item{content}{Specifies what to plot:
|
||||
\itemize{
|
||||
\item "history" Plots the loss history from stiefel optimization
|
||||
(default).
|
||||
\item ... TODO: add (if there are any)
|
||||
}}
|
||||
}
|
||||
\description{
|
||||
Ploting helper for objects of class \code{cve}.
|
||||
}
|
||||
\seealso{
|
||||
see \code{\link{par}} for graphical parameters to pass through
|
||||
as well as \code{\link{plot}} for standard plot utility.
|
||||
}
|
|
@ -0,0 +1,22 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/util.R
|
||||
\name{rStiefl}
|
||||
\alias{rStiefl}
|
||||
\title{Samples uniform from the Stiefel Manifold}
|
||||
\usage{
|
||||
rStiefl(p, q)
|
||||
}
|
||||
\arguments{
|
||||
\item{p}{row dim.}
|
||||
|
||||
\item{q}{col dim.}
|
||||
}
|
||||
\value{
|
||||
`(p, q)` semi-orthogonal matrix
|
||||
}
|
||||
\description{
|
||||
Samples uniform from the Stiefel Manifold
|
||||
}
|
||||
\examples{
|
||||
V <- rStiefel(6, 4)
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/CVE.R
|
||||
\name{summary.cve}
|
||||
\alias{summary.cve}
|
||||
\title{Prints a summary of a \code{cve} result.}
|
||||
\usage{
|
||||
\method{summary}{cve}(object, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{object}{Instance of 'cve' as return of \code{cve}.}
|
||||
}
|
||||
\description{
|
||||
Prints a summary of a \code{cve} result.
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
|
||||
## With R 3.1.0 or later, you can uncomment the following line to tell R to
|
||||
## enable compilation with C++11 (where available)
|
||||
##
|
||||
## Also, OpenMP support in Armadillo prefers C++11 support. However, for wider
|
||||
## availability of the package we do not yet enforce this here. It is however
|
||||
## recommended for client packages to set it.
|
||||
##
|
||||
## And with R 3.4.0, and RcppArmadillo 0.7.960.*, we turn C++11 on as OpenMP
|
||||
## support within Armadillo prefers / requires it
|
||||
CXX_STD = CXX11
|
||||
|
||||
PKG_CXXFLAGS = $(SHLIB_OPENMP_CXXFLAGS)
|
||||
PKG_LIBS = $(SHLIB_OPENMP_CXXFLAGS) $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)
|
|
@ -0,0 +1,14 @@
|
|||
|
||||
## With R 3.1.0 or later, you can uncomment the following line to tell R to
|
||||
## enable compilation with C++11 (where available)
|
||||
##
|
||||
## Also, OpenMP support in Armadillo prefers C++11 support. However, for wider
|
||||
## availability of the package we do not yet enforce this here. It is however
|
||||
## recommended for client packages to set it.
|
||||
##
|
||||
## And with R 3.4.0, and RcppArmadillo 0.7.960.*, we turn C++11 on as OpenMP
|
||||
## support within Armadillo prefers / requires it
|
||||
CXX_STD = CXX11
|
||||
|
||||
PKG_CXXFLAGS = $(SHLIB_OPENMP_CXXFLAGS)
|
||||
PKG_LIBS = $(SHLIB_OPENMP_CXXFLAGS) $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)
|
|
@ -0,0 +1,7 @@
|
|||
#ifndef CVE_INCLUDE_GUARD_CONFIG_
|
||||
#define CVE_INCLUDE_GUARD_CONFIG_
|
||||
|
||||
#define CVE_MEM_CHUNK_SIZE 2032
|
||||
#define CVE_MEM_CHUNK_SMALL 1016
|
||||
|
||||
#endif /* CVE_INCLUDE_GUARD_CONFIG_ */
|
|
@ -0,0 +1,29 @@
|
|||
#include <Rinternals.h>
|
||||
|
||||
void grad(const int n, const int p, const int q,
|
||||
const double *X,
|
||||
const double *X_diff,
|
||||
const double *Y,
|
||||
const double *V,
|
||||
const double h,
|
||||
double *G, double *loss);
|
||||
|
||||
SEXP grad_c(SEXP X, SEXP X_diff, SEXP Y, SEXP V, SEXP h) {
|
||||
SEXP G = PROTECT(allocMatrix(REALSXP, nrows(V), ncols(V)));
|
||||
SEXP loss = PROTECT(ScalarReal(0.0));
|
||||
|
||||
grad(nrows(X), ncols(X), ncols(V),
|
||||
REAL(X), REAL(X_diff), REAL(Y), REAL(V), *REAL(h),
|
||||
REAL(G), REAL(loss));
|
||||
|
||||
SEXP out = PROTECT(allocVector(VECSXP, 2));
|
||||
SET_VECTOR_ELT(out, 0, G);
|
||||
SET_VECTOR_ELT(out, 1, loss);
|
||||
SEXP names = PROTECT(allocVector(STRSXP, 2));
|
||||
SET_STRING_ELT(names, 0, mkChar("G"));
|
||||
SET_STRING_ELT(names, 1, mkChar("loss"));
|
||||
setAttrib(out, install("names"), names);
|
||||
|
||||
UNPROTECT(4);
|
||||
return out;
|
||||
}
|
|
@ -0,0 +1,123 @@
|
|||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "sums.h"
|
||||
#include "sweep.h"
|
||||
#include "matrix.h"
|
||||
#include "indexing.h"
|
||||
|
||||
// TODO: clarify
|
||||
static inline double gaussKernel(const double x, const double scale) {
|
||||
return exp(scale * x * x);
|
||||
}
|
||||
|
||||
// TODO: mutch potential for optimization!!!
|
||||
static void weightedYandLoss(const int n,
|
||||
const double *Y,
|
||||
const double *vecD,
|
||||
const double *vecW,
|
||||
const double *colSums,
|
||||
double *y1, double *L, double *vecS,
|
||||
double *loss) {
|
||||
int i, j, k, N = n * (n - 1) / 2;
|
||||
double l;
|
||||
|
||||
for (i = 0; i < n; ++i) {
|
||||
y1[i] = Y[i] / colSums[i];
|
||||
L[i] = Y[i] * Y[i] / colSums[i];
|
||||
}
|
||||
|
||||
for (k = j = 0; j < n; ++j) {
|
||||
for (i = j + 1; i < n; ++i, ++k) {
|
||||
y1[i] += Y[j] * vecW[k] / colSums[i];
|
||||
y1[j] += Y[i] * vecW[k] / colSums[j];
|
||||
L[i] += Y[j] * Y[j] * vecW[k] / colSums[i];
|
||||
L[j] += Y[i] * Y[i] * vecW[k] / colSums[j];
|
||||
}
|
||||
}
|
||||
|
||||
l = 0.0;
|
||||
for (i = 0; i < n; ++i) {
|
||||
l += (L[i] -= y1[i] * y1[i]);
|
||||
}
|
||||
*loss = l / (double)n;
|
||||
|
||||
for (k = j = 0; j < n; ++j) {
|
||||
for (i = j + 1; i < n; ++i, ++k) {
|
||||
l = Y[j] - y1[i];
|
||||
vecS[k] = (L[i] - (l * l)) / colSums[i];
|
||||
l = Y[i] - y1[j];
|
||||
vecS[k] += (L[j] - (l * l)) / colSums[j];
|
||||
}
|
||||
}
|
||||
|
||||
for (k = 0; k < N; ++k) {
|
||||
vecS[k] *= vecW[k] * vecD[k];
|
||||
}
|
||||
}
|
||||
|
||||
void grad(const int n, const int p, const int q,
|
||||
const double *X,
|
||||
const double *X_diff,
|
||||
const double *Y,
|
||||
const double *V,
|
||||
const double h,
|
||||
double *G, double *loss) {
|
||||
// Number of X_i to X_j not trivial pairs.
|
||||
int i, N = (n * (n - 1)) / 2;
|
||||
double scale = -0.5 / h;
|
||||
|
||||
if (X_diff == (void*)0) {
|
||||
// TODO: ...
|
||||
}
|
||||
|
||||
// Allocate and compute projection matrix `Q = I_p - V * V^T`
|
||||
double *Q = (double*)malloc(p * p * sizeof(double));
|
||||
nullProj(V, p, q, Q);
|
||||
|
||||
// allocate and compute vectorized distance matrix with a temporary
|
||||
// projection of `X_diff`.
|
||||
double *vecD = (double*)malloc(N * sizeof(double));
|
||||
double *X_proj;
|
||||
if (p < 5) { // TODO: refine that!
|
||||
X_proj = (double*)malloc(N * 5 * sizeof(double));
|
||||
} else {
|
||||
X_proj = (double*)malloc(N * p * sizeof(double));
|
||||
}
|
||||
matrixprod(X_diff, N, p, Q, p, p, X_proj);
|
||||
rowSquareSums(X_proj, N, p, vecD);
|
||||
|
||||
// Apply kernel to distence vector for weights computation.
|
||||
double *vecW = X_proj; // reuse memory area, no longer needed.
|
||||
for (i = 0; i < N; ++i) {
|
||||
vecW[i] = gaussKernel(vecD[i], scale);
|
||||
}
|
||||
double *colSums = X_proj + N; // still allocated!
|
||||
rowSumsSymVec(vecW, n, 1.0, colSums); // rowSums = colSums cause Sym
|
||||
|
||||
// compute weighted responces of first end second momontum, aka y1, y2.
|
||||
double *y1 = X_proj + N + n;
|
||||
double *L = X_proj + N + (2 * n);
|
||||
// Allocate X_diff scaling vector `vecS`, not in `X_proj` mem area because
|
||||
// used symultanious to X_proj in final gradient computation.
|
||||
double *vecS = (double*)malloc(N * sizeof(double));
|
||||
weightedYandLoss(n, Y, vecD, vecW, colSums, y1, L, vecS, loss);
|
||||
|
||||
// compute the gradient using X_proj for intermidiate scaled X_diff.
|
||||
rowSweep(X_diff, N, p, "*", vecS, X_proj);
|
||||
// reuse Q which has the required dim (p, p).
|
||||
crossprod(X_diff, N, p, X_proj, N, p, Q);
|
||||
// Product with V
|
||||
matrixprod(Q, p, p, V, p, q, G);
|
||||
// And final scaling (TODO: move into matrixprod!)
|
||||
scale = -2.0 / (((double)n) * h * h);
|
||||
N = p * q;
|
||||
for (i = 0; i < N; ++i) {
|
||||
G[i] *= scale;
|
||||
}
|
||||
|
||||
free(vecS);
|
||||
free(X_proj);
|
||||
free(vecD);
|
||||
free(Q);
|
||||
}
|
|
@ -0,0 +1,12 @@
|
|||
#include "indexing.h"
|
||||
|
||||
void rangePairs(const int from, const int to, int *pairs) {
|
||||
int i, j, k;
|
||||
|
||||
for (k = 0, i = from; i < to; ++i) {
|
||||
for (j = i + 1; j < to; ++j, k += 2) {
|
||||
pairs[k] = i;
|
||||
pairs[k + 1] = j;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,8 @@
|
|||
|
||||
/* Include Guard */
|
||||
#ifndef CVE_INCLUDE_GUARD_INDEXING_
|
||||
#define CVE_INCLUDE_GUARD_INDEXING_
|
||||
|
||||
void rangePairs(const int from, const int to, int *pairs);
|
||||
|
||||
#endif /* CVE_INCLUDE_GUARD_INDEXING_ */
|
|
@ -0,0 +1,23 @@
|
|||
#include <R.h>
|
||||
#include <Rinternals.h>
|
||||
#include <stdlib.h> // for NULL
|
||||
#include <R_ext/Rdynload.h>
|
||||
|
||||
/* FIXME:
|
||||
Check these declarations against the C/Fortran source code.
|
||||
*/
|
||||
|
||||
/* .Call calls */
|
||||
extern SEXP grad_c(SEXP, SEXP, SEXP, SEXP, SEXP);
|
||||
|
||||
static const R_CallMethodDef CallEntries[] = {
|
||||
{"grad_c", (DL_FUNC) &grad_c, 5},
|
||||
{NULL, NULL, 0}
|
||||
};
|
||||
|
||||
/* Restrict C entrypoints to registered routines. */
|
||||
void R_initCVE(DllInfo *dll)
|
||||
{
|
||||
R_registerRoutines(dll, NULL, CallEntries, NULL, NULL);
|
||||
R_useDynamicSymbols(dll, FALSE);
|
||||
}
|
|
@ -0,0 +1,71 @@
|
|||
#include <string.h> // for `mem*` functions.
|
||||
|
||||
#include "config.h"
|
||||
#include "matrix.h"
|
||||
|
||||
#include <R_ext/BLAS.h>
|
||||
|
||||
void matrixprod(const double *A, const int nrowA, const int ncolA,
|
||||
const double *B, const int nrowB, const int ncolB,
|
||||
double *C) {
|
||||
const double one = 1.0;
|
||||
const double zero = 0.0;
|
||||
|
||||
// DGEMM with parameterization:
|
||||
// C <- A %*% B
|
||||
F77_NAME(dgemm)("N", "N", &nrowA, &ncolB, &ncolA,
|
||||
&one, A, &nrowA, B, &nrowB,
|
||||
&zero, C, &nrowA);
|
||||
}
|
||||
|
||||
void crossprod(const double *A, const int nrowA, const int ncolA,
|
||||
const double *B, const int nrowB, const int ncolB,
|
||||
double *C) {
|
||||
const double one = 1.0;
|
||||
const double zero = 0.0;
|
||||
|
||||
// DGEMM with parameterization:
|
||||
// C <- t(A) %*% B
|
||||
F77_NAME(dgemm)("T", "N", &ncolA, &ncolB, &nrowA,
|
||||
&one, A, &nrowA, B, &nrowB,
|
||||
&zero, C, &ncolA);
|
||||
}
|
||||
|
||||
void nullProj(const double *B, const int nrowB, const int ncolB,
|
||||
double *Q) {
|
||||
const double minusOne = -1.0;
|
||||
const double one = 1.0;
|
||||
|
||||
// Initialize as identity matrix.
|
||||
memset(Q, 0, sizeof(double) * nrowB * nrowB);
|
||||
double *Q_diag, *Q_end = Q + nrowB * nrowB;
|
||||
for (Q_diag = Q; Q_diag < Q_end; Q_diag += nrowB + 1) {
|
||||
*Q_diag = 1.0;
|
||||
}
|
||||
|
||||
// DGEMM with parameterization:
|
||||
// C <- (-1.0 * B %*% t(B)) + C
|
||||
F77_NAME(dgemm)("N", "T", &nrowB, &nrowB, &ncolB,
|
||||
&minusOne, B, &nrowB, B, &nrowB,
|
||||
&one, Q, &nrowB);
|
||||
}
|
||||
|
||||
// A dence skwe-symmetric rank 2 update.
|
||||
// Perform the update
|
||||
// C := alpha (A * B^T - B * A^T) + beta C
|
||||
void skewSymRank2k(const int nrow, const int ncol,
|
||||
double alpha, const double *A, const double *B,
|
||||
double beta,
|
||||
double *C) {
|
||||
F77_NAME(dgemm)("N", "T",
|
||||
&nrow, &nrow, &ncol,
|
||||
&alpha, A, &nrow, B, &nrow,
|
||||
&beta, C, &nrow);
|
||||
|
||||
alpha *= -1.0;
|
||||
beta = 1.0;
|
||||
F77_NAME(dgemm)("N", "T",
|
||||
&nrow, &nrow, &ncol,
|
||||
&alpha, B, &nrow, A, &nrow,
|
||||
&beta, C, &nrow);
|
||||
}
|
|
@ -0,0 +1,25 @@
|
|||
|
||||
/* Include Guard */
|
||||
#ifndef CVE_INCLUDE_GUARD_MATRIX_
|
||||
#define CVE_INCLUDE_GUARD_MATRIX_
|
||||
|
||||
void matrixprod(const double *A, const int nrowA, const int ncolA,
|
||||
const double *B, const int nrowB, const int ncolB,
|
||||
double *C);
|
||||
|
||||
void crossprod(const double *A, const int nrowA, const int ncolA,
|
||||
const double *B, const int nrowB, const int ncolB,
|
||||
double *C);
|
||||
|
||||
void nullProj(const double *B, const int nrowB, const int ncolB,
|
||||
double *Q);
|
||||
|
||||
// A dence skwe-symmetric rank 2 update.
|
||||
// Perform the update
|
||||
// C := alpha (A * B^T - B * A^T) + beta C
|
||||
void skewSymRank2k(const int nrow, const int ncol,
|
||||
double alpha, const double *A, const double *B,
|
||||
double beta,
|
||||
double *C);
|
||||
|
||||
#endif /* CVE_INCLUDE_GUARD_MATRIX_ */
|
|
@ -0,0 +1,113 @@
|
|||
#include <string.h> // for `mem*` functions.
|
||||
|
||||
#include "config.h"
|
||||
#include "sums.h"
|
||||
|
||||
void rowSums(const double *A, const int nrow, const int ncol,
|
||||
double *sum) {
|
||||
int i, j, block_size, block_size_i;
|
||||
const double *A_block = A;
|
||||
const double *A_end = A + nrow * ncol;
|
||||
|
||||
if (nrow > CVE_MEM_CHUNK_SIZE) {
|
||||
block_size = CVE_MEM_CHUNK_SIZE;
|
||||
} else {
|
||||
block_size = nrow;
|
||||
}
|
||||
|
||||
// Iterate `(block_size_i, ncol)` submatrix blocks.
|
||||
for (i = 0; i < nrow; i += block_size_i) {
|
||||
// Reset `A` to new block beginning.
|
||||
A = A_block;
|
||||
// Take block size of eveything left and reduce to max size.
|
||||
block_size_i = nrow - i;
|
||||
if (block_size_i > block_size) {
|
||||
block_size_i = block_size;
|
||||
}
|
||||
// Compute first blocks column,
|
||||
for (j = 0; j < block_size_i; ++j) {
|
||||
sum[j] = A[j];
|
||||
}
|
||||
// and sum the following columns to the first one.
|
||||
for (A += nrow; A < A_end; A += nrow) {
|
||||
for (j = 0; j < block_size_i; ++j) {
|
||||
sum[j] += A[j];
|
||||
}
|
||||
}
|
||||
// Step one block forth.
|
||||
A_block += block_size_i;
|
||||
sum += block_size_i;
|
||||
}
|
||||
}
|
||||
|
||||
void colSums(const double *A, const int nrow, const int ncol,
|
||||
double *sum) {
|
||||
int j;
|
||||
double *sum_end = sum + ncol;
|
||||
|
||||
memset(sum, 0, sizeof(double) * ncol);
|
||||
for (; sum < sum_end; ++sum) {
|
||||
for (j = 0; j < nrow; ++j) {
|
||||
*sum += A[j];
|
||||
}
|
||||
A += nrow;
|
||||
}
|
||||
}
|
||||
|
||||
void rowSquareSums(const double *A, const int nrow, const int ncol,
|
||||
double *sum) {
|
||||
int i, j, block_size, block_size_i;
|
||||
const double *A_block = A;
|
||||
const double *A_end = A + nrow * ncol;
|
||||
|
||||
if (nrow < CVE_MEM_CHUNK_SIZE) {
|
||||
block_size = nrow;
|
||||
} else {
|
||||
block_size = CVE_MEM_CHUNK_SIZE;
|
||||
}
|
||||
|
||||
// Iterate `(block_size_i, ncol)` submatrix blocks.
|
||||
for (i = 0; i < nrow; i += block_size_i) {
|
||||
// Reset `A` to new block beginning.
|
||||
A = A_block;
|
||||
// Take block size of eveything left and reduce to max size.
|
||||
block_size_i = nrow - i;
|
||||
if (block_size_i > block_size) {
|
||||
block_size_i = block_size;
|
||||
}
|
||||
// Compute first blocks column,
|
||||
for (j = 0; j < block_size_i; ++j) {
|
||||
sum[j] = A[j] * A[j];
|
||||
}
|
||||
// and sum the following columns to the first one.
|
||||
for (A += nrow; A < A_end; A += nrow) {
|
||||
for (j = 0; j < block_size_i; ++j) {
|
||||
sum[j] += A[j] * A[j];
|
||||
}
|
||||
}
|
||||
// Step one block forth.
|
||||
A_block += block_size_i;
|
||||
sum += block_size_i;
|
||||
}
|
||||
}
|
||||
|
||||
void rowSumsSymVec(const double *Avec, const int nrow,
|
||||
const double diag,
|
||||
double *sum) {
|
||||
int i, j;
|
||||
|
||||
if (diag == 0.0) {
|
||||
memset(sum, 0, nrow * sizeof(double));
|
||||
} else {
|
||||
for (i = 0; i < nrow; ++i) {
|
||||
sum[i] = diag;
|
||||
}
|
||||
}
|
||||
|
||||
for (j = 0; j < nrow; ++j) {
|
||||
for (i = j + 1; i < nrow; ++i, ++Avec) {
|
||||
sum[j] += *Avec;
|
||||
sum[i] += *Avec;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,19 @@
|
|||
|
||||
/* Include Guard */
|
||||
#ifndef CVE_INCLUDE_GUARD_SUMS_
|
||||
#define CVE_INCLUDE_GUARD_SUMS_
|
||||
|
||||
void rowSums(const double *A, const int nrow, const int ncol,
|
||||
double *sum);
|
||||
|
||||
void colSums(const double *A, const int nrow, const int ncol,
|
||||
double *sum);
|
||||
|
||||
void rowSquareSums(const double *A, const int nrow, const int ncol,
|
||||
double *sum);
|
||||
|
||||
void rowSumsSymVec(const double *Avec, const int nrow,
|
||||
const double diag,
|
||||
double *sum);
|
||||
|
||||
#endif /* CVE_INCLUDE_GUARD_SUMS_ */
|
|
@ -0,0 +1,113 @@
|
|||
#include <R_ext/Error.h> // for `error`.
|
||||
|
||||
#include "config.h"
|
||||
#include "sweep.h"
|
||||
|
||||
/* C[, j] = A[, j] * v for each j = 1 to ncol */
|
||||
void rowSweep(const double *A, const int nrow, const int ncol,
|
||||
const char* op,
|
||||
const double *v, // vector of length nrow
|
||||
double *C) {
|
||||
int i, j, block_size, block_size_i;
|
||||
const double *A_block = A;
|
||||
double *C_block = C;
|
||||
const double *A_end = A + nrow * ncol;
|
||||
|
||||
if (nrow > CVE_MEM_CHUNK_SMALL) { // small because 3 vectors in cache
|
||||
block_size = CVE_MEM_CHUNK_SMALL;
|
||||
} else {
|
||||
block_size = nrow;
|
||||
}
|
||||
|
||||
if (*op == '+') {
|
||||
// Iterate `(block_size_i, ncol)` submatrix blocks.
|
||||
for (i = 0; i < nrow; i += block_size_i) {
|
||||
// Set `A` and `C` to block beginning.
|
||||
A = A_block;
|
||||
C = C_block;
|
||||
// Get current block's row size.
|
||||
block_size_i = nrow - i;
|
||||
if (block_size_i > block_size) {
|
||||
block_size_i = block_size;
|
||||
}
|
||||
// Perform element wise operation for block.
|
||||
for (; A < A_end; A += nrow, C += nrow) {
|
||||
for (j = 0; j < block_size_i; ++j) {
|
||||
C[j] = A[j] + v[j]; // FUN = '+'
|
||||
}
|
||||
}
|
||||
// Step one block forth.
|
||||
A_block += block_size_i;
|
||||
C_block += block_size_i;
|
||||
v += block_size_i;
|
||||
}
|
||||
} else if (*op == '-') {
|
||||
// Iterate `(block_size_i, ncol)` submatrix blocks.
|
||||
for (i = 0; i < nrow; i += block_size_i) {
|
||||
// Set `A` and `C` to block beginning.
|
||||
A = A_block;
|
||||
C = C_block;
|
||||
// Get current block's row size.
|
||||
block_size_i = nrow - i;
|
||||
if (block_size_i > block_size) {
|
||||
block_size_i = block_size;
|
||||
}
|
||||
// Perform element wise operation for block.
|
||||
for (; A < A_end; A += nrow, C += nrow) {
|
||||
for (j = 0; j < block_size_i; ++j) {
|
||||
C[j] = A[j] - v[j]; // FUN = '-'
|
||||
}
|
||||
}
|
||||
// Step one block forth.
|
||||
A_block += block_size_i;
|
||||
C_block += block_size_i;
|
||||
v += block_size_i;
|
||||
}
|
||||
} else if (*op == '*') {
|
||||
// Iterate `(block_size_i, ncol)` submatrix blocks.
|
||||
for (i = 0; i < nrow; i += block_size_i) {
|
||||
// Set `A` and `C` to block beginning.
|
||||
A = A_block;
|
||||
C = C_block;
|
||||
// Get current block's row size.
|
||||
block_size_i = nrow - i;
|
||||
if (block_size_i > block_size) {
|
||||
block_size_i = block_size;
|
||||
}
|
||||
// Perform element wise operation for block.
|
||||
for (; A < A_end; A += nrow, C += nrow) {
|
||||
for (j = 0; j < block_size_i; ++j) {
|
||||
C[j] = A[j] * v[j]; // FUN = '*'
|
||||
}
|
||||
}
|
||||
// Step one block forth.
|
||||
A_block += block_size_i;
|
||||
C_block += block_size_i;
|
||||
v += block_size_i;
|
||||
}
|
||||
} else if (*op == '/') {
|
||||
// Iterate `(block_size_i, ncol)` submatrix blocks.
|
||||
for (i = 0; i < nrow; i += block_size_i) {
|
||||
// Set `A` and `C` to block beginning.
|
||||
A = A_block;
|
||||
C = C_block;
|
||||
// Get current block's row size.
|
||||
block_size_i = nrow - i;
|
||||
if (block_size_i > block_size) {
|
||||
block_size_i = block_size;
|
||||
}
|
||||
// Perform element wise operation for block.
|
||||
for (; A < A_end; A += nrow, C += nrow) {
|
||||
for (j = 0; j < block_size_i; ++j) {
|
||||
C[j] = A[j] / v[j]; // FUN = '/'
|
||||
}
|
||||
}
|
||||
// Step one block forth.
|
||||
A_block += block_size_i;
|
||||
C_block += block_size_i;
|
||||
v += block_size_i;
|
||||
}
|
||||
} else {
|
||||
error("Got unknown 'op' (opperation) argument.");
|
||||
}
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
|
||||
/* Include Guard */
|
||||
#ifndef CVE_INCLUDE_GUARD_SWEEP_
|
||||
#define CVE_INCLUDE_GUARD_SWEEP_
|
||||
|
||||
void rowSweep(const double *A, const int nrow, const int ncol,
|
||||
const char* op,
|
||||
const double *v, // vector of length nrow
|
||||
double *C);
|
||||
|
||||
#endif /* CVE_INCLUDE_GUARD_SWEEP_ */
|
29
notes.md
29
notes.md
|
@ -6,6 +6,35 @@ grep --include=*\.{c,h,R} -rnw '.' -e "sweep"
|
|||
```
|
||||
searches in all `C` source and header fils as well as `R` source files for the term _sweep_.
|
||||
|
||||
## Recursive dir. compair with colored sructure (more or less).
|
||||
```bash
|
||||
diff -r CVE_R/ CVE_C/ | grep -E "^([<>]|[^<>].*)"
|
||||
```
|
||||
|
||||
## Parsing `bash` script parameters.
|
||||
```bash
|
||||
usage="$0 [-v|--verbose] [-n|--dry-run] [(-s|--stack-size) <size>] [-h|--help] [-- [p1, [p2, ...]]]"
|
||||
verbose=false
|
||||
help=false
|
||||
dry_run=false
|
||||
stack_size=0
|
||||
|
||||
while [ $# -gt 0 ]; do
|
||||
case "$1" in
|
||||
-v | --verbose ) verbose=true; shift ;;
|
||||
-n | --dry-run ) dry_run=true; shift ;;
|
||||
-s | --stack-size ) stack_size="$2"; shift; shift ;;
|
||||
-h | --help ) echo $usage; exit ;; # On help print usage and exit.
|
||||
-- ) shift; break ;; # Break param "parsing".
|
||||
* ) echo $usage >&2; exit 1 ;; # Print usage and exit with failure.
|
||||
esac
|
||||
done
|
||||
|
||||
echo verbose=$verbose
|
||||
echo dry_run=$dry_run
|
||||
echo stack_size=$stack_size
|
||||
```
|
||||
|
||||
# Development
|
||||
## Build and install.
|
||||
To build the package the `devtools` package is used. This also provides `roxygen2` which is used for documentation and authomatic creaton of the `NAMESPACE` file.
|
||||
|
|
19
wip.R
19
wip.R
|
@ -118,6 +118,17 @@ microbenchmark(
|
|||
)
|
||||
|
||||
## Matrix-Matrix opperation .call ---------------------------------------------
|
||||
transpose.c <- function(A) {
|
||||
stopifnot(
|
||||
is.matrix(A), is.numeric(A)
|
||||
)
|
||||
if (!is.double(A)) {
|
||||
A <- matrix(as.double(A), nrow(A), ncol(A))
|
||||
}
|
||||
|
||||
.Call('R_transpose', PACKAGE = 'wip', A)
|
||||
}
|
||||
|
||||
matrixprod.c <- function(A, B) {
|
||||
stopifnot(
|
||||
is.matrix(A), is.numeric(A),
|
||||
|
@ -174,6 +185,14 @@ m <- 300
|
|||
|
||||
A <- matrix(runif(n * k), n, k)
|
||||
B <- matrix(runif(k * m), k, m)
|
||||
stopifnot(
|
||||
all.equal(t(A), transpose.c(A))
|
||||
)
|
||||
microbenchmark(
|
||||
t(A),
|
||||
transpose.c(A)
|
||||
)
|
||||
|
||||
stopifnot(
|
||||
all.equal(A %*% B, matrixprod.c(A, B))
|
||||
)
|
||||
|
|
22
wip.c
22
wip.c
|
@ -1,4 +1,5 @@
|
|||
#include <stdlib.h>
|
||||
#include <string.h> // for `mem*` functions.
|
||||
|
||||
#include <R_ext/BLAS.h>
|
||||
#include <R_ext/Lapack.h>
|
||||
|
@ -99,15 +100,15 @@ static inline void rowSquareSums(const double *A,
|
|||
}
|
||||
|
||||
static inline void rowSumsSymVec(const double *Avec, const int nrow,
|
||||
const double *diag,
|
||||
const double diag,
|
||||
double *sum) {
|
||||
int i, j;
|
||||
|
||||
if (*diag == 0.0) {
|
||||
if (diag == 0.0) {
|
||||
memset(sum, 0, nrow * sizeof(double));
|
||||
} else {
|
||||
for (i = 0; i < nrow; ++i) {
|
||||
sum[i] = *diag;
|
||||
sum[i] = diag;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -228,6 +229,18 @@ static void rowSweep(const double *A, const int nrow, const int ncol,
|
|||
}
|
||||
}
|
||||
|
||||
void transpose(const double *A, const int nrow, const int ncol, double* T) {
|
||||
int i, j, len = nrow * ncol;
|
||||
|
||||
// Filling column-wise and accessing row-wise.
|
||||
for (i = 0, j = 0; i < len; ++i, j += nrow) {
|
||||
if (j >= len) {
|
||||
j -= len - 1;
|
||||
}
|
||||
T[i] = A[j];
|
||||
}
|
||||
}
|
||||
|
||||
static inline void matrixprod(const double *A, const int nrowA, const int ncolA,
|
||||
const double *B, const int nrowB, const int ncolB,
|
||||
double *C) {
|
||||
|
@ -363,7 +376,6 @@ static void gradient(const int n, const int p, const int q,
|
|||
// Number of X_i to X_j not trivial pairs.
|
||||
int i, N = (n * (n - 1)) / 2;
|
||||
double scale = -0.5 / h;
|
||||
const double one = 1.0;
|
||||
|
||||
if (X_diff == (void*)0) {
|
||||
// TODO: ...
|
||||
|
@ -391,7 +403,7 @@ static void gradient(const int n, const int p, const int q,
|
|||
vecW[i] = gaussKernel(vecD[i], scale);
|
||||
}
|
||||
double *colSums = X_proj + N; // still allocated!
|
||||
rowSumsSymVec(vecW, n, &one, colSums); // rowSums = colSums cause Sym
|
||||
rowSumsSymVec(vecW, n, 1.0, colSums); // rowSums = colSums cause Sym
|
||||
|
||||
// compute weighted responces of first end second momontum, aka y1, y2.
|
||||
double *y1 = X_proj + N + n;
|
||||
|
|
20
wip.h
20
wip.h
|
@ -1,5 +1,5 @@
|
|||
#ifndef _CVE_INCLUDE_GUARD_
|
||||
#define _CVE_INCLUDE_GUARD_
|
||||
#ifndef CVE_INCLUDE_GUARD_
|
||||
#define CVE_INCLUDE_GUARD_
|
||||
|
||||
#include <Rinternals.h>
|
||||
|
||||
|
@ -41,12 +41,12 @@ SEXP R_rowSquareSums(SEXP A) {
|
|||
}
|
||||
|
||||
static inline void rowSumsSymVec(const double *Avec, const int nrow,
|
||||
const double *diag,
|
||||
const double diag,
|
||||
double *sum);
|
||||
SEXP R_rowSumsSymVec(SEXP Avec, SEXP nrow, SEXP diag) {
|
||||
SEXP sum = PROTECT(allocVector(REALSXP, *INTEGER(nrow)));
|
||||
|
||||
rowSumsSymVec(REAL(Avec), *INTEGER(nrow), REAL(diag), REAL(sum));
|
||||
rowSumsSymVec(REAL(Avec), *INTEGER(nrow), *REAL(diag), REAL(sum));
|
||||
|
||||
UNPROTECT(1);
|
||||
return sum;
|
||||
|
@ -67,6 +67,16 @@ SEXP R_rowSweep(SEXP A, SEXP v, SEXP op) {
|
|||
return C;
|
||||
}
|
||||
|
||||
void transpose(const double *A, const int nrow, const int ncol, double* T);
|
||||
SEXP R_transpose(SEXP A) {
|
||||
SEXP T = PROTECT(allocMatrix(REALSXP, ncols(A), nrows(A)));
|
||||
|
||||
transpose(REAL(A), nrows(A), ncols(A), REAL(T));
|
||||
|
||||
UNPROTECT(1); /* T */
|
||||
return T;
|
||||
}
|
||||
|
||||
static inline void matrixprod(const double *A, const int nrowA, const int ncolA,
|
||||
const double *B, const int nrowB, const int ncolB,
|
||||
double *C);
|
||||
|
@ -156,4 +166,4 @@ SEXP R_gradient(SEXP X, SEXP X_diff, SEXP Y, SEXP V, SEXP h) {
|
|||
return G;
|
||||
}
|
||||
|
||||
#endif /* _CVE_INCLUDE_GUARD_ */
|
||||
#endif /* CVE_INCLUDE_GUARD_ */
|
||||
|
|
Loading…
Reference in New Issue