2
0
Fork 0

add: to notes,

fix: bottleneck in grad
This commit is contained in:
Daniel Kapla 2019-09-03 20:43:34 +02:00
parent 7d4d01a9a7
commit 47917fe0bd
2 changed files with 70 additions and 3 deletions

View File

@ -67,7 +67,17 @@ grad <- function(X, Y, V, h,
vecS <- vecS * vecD vecS <- vecS * vecD
# The gradient. # The gradient.
G <- crossprod(X_diff, sweep(X_diff %*% V, 1, vecS, `*`)) # 1. The `crossprod(A, B)` is equivalent to `t(A) %*% B`,
# 2. `(X_diff %*% V) * vecS` is first a marix matrix mult. and then using
# recycling to scale each row with the values of `vecS`.
# Note that `vecS` is a vector and that `R` uses column-major ordering
# of matrices.
# (See: notes for more details)
# TODO: Depending on n, p, q decide which version to take (for current
# datasets "inner" is faster, see: notes).
# inner = crossprod(X_diff, X_diff * vecS) %*% V,
# outer = crossprod(X_diff, (X_diff %*% V) * vecS)
G <- crossprod(X_diff, X_diff * vecS) %*% V
G <- (-2 / (n * h^2)) * G G <- (-2 / (n * h^2)) * G
return(G) return(G)
} }

View File

@ -33,9 +33,15 @@ install.packages(path, repos = NULL, type = "source")
The runtime tests (upcomming further tests) are creating log files saved in `tmp/`. These log files are `CSV` files (actualy `TSV`) with a header storing the test results. Depending on the test the files may contain differnt data. As an example we use the runtime test logs which store in each line the `dataset`, the used `method` as well as the `error` (actual error of estimated `B` against real `B`) and the `time`. For reading and analysing the data see the following example. The runtime tests (upcomming further tests) are creating log files saved in `tmp/`. These log files are `CSV` files (actualy `TSV`) with a header storing the test results. Depending on the test the files may contain differnt data. As an example we use the runtime test logs which store in each line the `dataset`, the used `method` as well as the `error` (actual error of estimated `B` against real `B`) and the `time`. For reading and analysing the data see the following example.
```R ```R
# Load log as `data.frame` # Load log as `data.frame`
test0 <- read.csv('tmp/test0.log', sep = '\t') log <- read.csv('tmp/test0.log', sep = '\t')
# Create a error boxplot grouped by dataset. # Create a error boxplot grouped by dataset.
boxplot(error ~ dataset, test0) boxplot(error ~ dataset, log)
# Overview
for (ds.name in paste0('M', seq(5))) {
ds <- subset(log, dataset == ds.name, select = c('method', 'dataset', 'time', 'error'))
print(summary(ds))
}
``` ```
## Environments and variable lookup. ## Environments and variable lookup.
@ -187,6 +193,57 @@ microbenchmark(
# tcrossprod(V, V) 1.003 1.1575 1.28451 1.2400 1.3685 2.742 100 # tcrossprod(V, V) 1.003 1.1575 1.28451 1.2400 1.3685 2.742 100
``` ```
### Recycling vs. Sweep
```R
(n <- 200)
(p <- 12)
(q <- 10)
X_diff <- matrix(runif(n * (n - 1) / 2 * p), n * (n - 1) / 2, p)
V <- matrix(rnorm(p * q), p, q)
vecS <- runif(n * (n - 1) / 2)
stopifnot(
all.equal((X_diff %*% V) * rep(vecS, q),
sweep(X_diff %*% V, 1, vecS, `*`)),
all.equal((X_diff %*% V) * rep(vecS, q),
(X_diff %*% V) * vecS)
)
microbenchmark(
rep = (X_diff %*% V) * rep(vecS, q),
sweep = sweep(X_diff %*% V, 1, vecS, `*`, check.margin = FALSE),
recycle = (X_diff %*% V) * vecS
)
# Unit: microseconds
# expr min lq mean median uq max neval
# rep 851.723 988.3655 1575.639 1203.6385 1440.578 18999.23 100
# sweep 1313.177 1522.4010 2355.269 1879.2605 2065.399 18783.24 100
# recycle 719.001 786.1265 1157.285 881.8825 1163.202 19091.79 100
```
### Scaled `crossprod` with matmul order.
```R
(n <- 200)
(p <- 12)
(q <- 10)
X_diff <- matrix(runif(n * (n - 1) / 2 * p), n * (n - 1) / 2, p)
V <- matrix(rnorm(p * q), p, q)
vecS <- runif(n * (n - 1) / 2)
ref <- crossprod(X_diff, X_diff * vecS) %*% V
stopifnot(
all.equal(ref, crossprod(X_diff, (X_diff %*% V) * vecS)),
all.equal(ref, crossprod(X_diff, (X_diff %*% V) * vecS))
)
microbenchmark(
inner = crossprod(X_diff, X_diff * vecS) %*% V,
outer = crossprod(X_diff, (X_diff %*% V) * vecS)
)
# Unit: microseconds
# expr min lq mean median uq max neval
# inner 789.065 867.939 1683.812 987.9375 1290.055 16800.265 100
# outer 1141.479 1216.929 1404.702 1317.7315 1582.800 2531.766 100
```
## Using `Rprof()` for performance. ## Using `Rprof()` for performance.
The standart method for profiling where an algorithm is spending its time is with `Rprof()`. The standart method for profiling where an algorithm is spending its time is with `Rprof()`.
```R ```R