fix: predict_dim_cv always failes with dim. missmatch,
add: support for central method in predcit_dim_cv
This commit is contained in:
parent
e93bfdda05
commit
25b20984d5
|
@ -7,8 +7,8 @@ predict_dim_cv <- function(object) {
|
|||
Sigma_root <- eig$vectors %*% tcrossprod(diag(sqrt(eig$values)), eig$vectors)
|
||||
X <- X %*% solve(Sigma_root)
|
||||
|
||||
pred <- matrix(0, n, length(object$res))
|
||||
colnames(pred) <- names(object$res)
|
||||
pred <- array(0, c(n, ncol(object$Fy), length(object$res)),
|
||||
dimnames = list(NULL, NULL, names(object$res)))
|
||||
for (dr.k in object$res) {
|
||||
# get "name" of current dimension
|
||||
k <- as.character(dr.k$k)
|
||||
|
@ -16,12 +16,11 @@ predict_dim_cv <- function(object) {
|
|||
X.proj <- X %*% dr.k$B
|
||||
|
||||
for (i in 1:n) {
|
||||
model <- mda::mars(X.proj[-i, ], object$Y[-i])
|
||||
pred[i, k] <- predict(model, X.proj[i, , drop = F])
|
||||
model <- mda::mars(X.proj[-i, ], object$Fy[-i, ])
|
||||
pred[i, , k] <- predict(model, X.proj[i, , drop = FALSE])
|
||||
}
|
||||
|
||||
}
|
||||
MSE <- colMeans((pred - object$Y)^2)
|
||||
MSE <- apply((pred - as.numeric(object$Fy))^2, 3, mean)
|
||||
|
||||
return(list(
|
||||
MSE = MSE,
|
||||
|
@ -30,6 +29,9 @@ predict_dim_cv <- function(object) {
|
|||
}
|
||||
|
||||
predict_dim_elbow <- function(object) {
|
||||
if (ncol(object$Fy) > 1) # TODO: Implement or find better way
|
||||
stop("For multivariate or central models not supported yet.")
|
||||
|
||||
# extract original data from object (cve result)
|
||||
X <- object$X
|
||||
Y <- object$Y
|
||||
|
@ -71,6 +73,9 @@ predict_dim_elbow <- function(object) {
|
|||
}
|
||||
|
||||
predict_dim_wilcoxon <- function(object, p.value = 0.05) {
|
||||
if (ncol(object$Fy) > 1) # TODO: Implement or find better way
|
||||
stop("For multivariate or central models not supported yet.")
|
||||
|
||||
# extract original data from object (cve result)
|
||||
X <- object$X
|
||||
Y <- object$Y
|
||||
|
@ -164,7 +169,7 @@ predict_dim_wilcoxon <- function(object, p.value = 0.05) {
|
|||
#' y <- x %*% B + 0.25 * rnorm(100)
|
||||
#'
|
||||
#' # Calculate cve for unknown k between min.dim and max.dim.
|
||||
#' cve.obj.simple <- cve(y ~ x)
|
||||
#' cve.obj.simple <- cve(y ~ x)
|
||||
#'
|
||||
#' predict_dim(cve.obj.simple)
|
||||
#'
|
||||
|
|
Loading…
Reference in New Issue