add: CVE,
add: R document files, add: CVE_paper, add: package-doc, fix: doc typo
This commit is contained in:
		
							parent
							
								
									4bc9ca2f58
								
							
						
					
					
						commit
						095e463463
					
				| @ -3,14 +3,8 @@ | ||||
| export(cve) | ||||
| export(cve_cpp) | ||||
| export(dataset) | ||||
| export(estimate.bandwidth) | ||||
| export(index_test) | ||||
| export(kron_test) | ||||
| export(estimateBandwidth) | ||||
| export(rStiefel) | ||||
| export(test1) | ||||
| export(test2) | ||||
| export(test3) | ||||
| export(test4) | ||||
| import(Rcpp) | ||||
| importFrom(Rcpp,evalCpp) | ||||
| useDynLib(CVE) | ||||
|  | ||||
							
								
								
									
										44
									
								
								CVE/R/CVE.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										44
									
								
								CVE/R/CVE.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,44 @@ | ||||
| #' Conditional Variance Estimator | ||||
| #' | ||||
| #' Conditional Variance Estimator (CVE) is a novel sufficient dimension | ||||
| #'  reduction (SDR) method for regressions satisfying E(Y|X) = E(Y|B'X), | ||||
| #'  where B'X is a lower dimensional projection of the predictors. | ||||
| #' | ||||
| #' @param X A matrix of type numeric of dimensions N times dim where N is the number | ||||
| #'  of entries with dim as data dimension. | ||||
| #' @param Y A vector of type numeric of length N (coresponds to \code{x}). | ||||
| #' @param k Guess for rank(B). | ||||
| #' @param nObs As describet in the paper. | ||||
| #'   | ||||
| #' @param tol Tolerance for optimization stopping creteria. | ||||
| #' @export | ||||
| #' | ||||
| #' @seealso TODO: \code{vignette("CVE_paper", package="CVE")}. | ||||
| #' | ||||
| #' @references Fertl Likas, Bura Efstathia. Conditional Variance Estimation for Sufficient Dimension Reduction, 2019 | ||||
| cve <- function(X, Y, k, | ||||
|                 nObs = sqrt(nrow(X)), | ||||
|                 tauInitial = 1.0, | ||||
|                 tol = 1e-3, | ||||
|                 slack = -1e-10, | ||||
|                 maxIter = 50L, | ||||
|                 attempts = 10L | ||||
| ) { | ||||
|     # check data parameter types | ||||
|     stopifnot( | ||||
|         is.matrix(X), | ||||
|         is.vector(Y), | ||||
|         typeof(X) == 'double', | ||||
|         typeof(Y) == 'double' | ||||
|     ) | ||||
| 
 | ||||
|     # call CVE C++ implementation | ||||
|     return(cve_cpp(X, Y, k, | ||||
|                    nObs, | ||||
|                    tauInitial, | ||||
|                    tol, | ||||
|                    slack, | ||||
|                    maxIter, | ||||
|                    attempts | ||||
|     )) | ||||
| } | ||||
							
								
								
									
										95
									
								
								CVE/R/RcppExports.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										95
									
								
								CVE/R/RcppExports.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,95 @@ | ||||
| # Generated by using Rcpp::compileAttributes() -> do not edit by hand | ||||
| # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 | ||||
| 
 | ||||
| #' Stiefel Optimization. | ||||
| #' | ||||
| #' Stiefel Optimization for \code{V} given a dataset \code{X} and responces | ||||
| #' \code{Y} for the model \deqn{Y\sim g(B'X) + \epsilon}{Y ~ g(B'X) + epsilon} | ||||
| #' to compute the matrix `B` such that \eqn{span{B} = span(V)^{\bot}}{% | ||||
| #' span(B) = orth(span(B))}. | ||||
| #' | ||||
| #' @param X data points | ||||
| #' @param Y response | ||||
| #' @param k assumed \eqn{rank(B)} | ||||
| #' @param nObs parameter for bandwidth estimation, typical value | ||||
| #'     \code{nObs = nrow(X)^lambda} with \code{lambda} in the range [0.3, 0.8]. | ||||
| #' @param tau Initial step size | ||||
| #' @param tol Tolerance for update error used for stopping criterion | ||||
| #'     \eqn{|| V(j) V(j)' - V(j+1) V(j+1)' ||_2 < tol}{% | ||||
| #'          \| V_j V_j' - V_{j+1} V_{j+1}' \|_2 < tol}. | ||||
| #' @param maxIter Upper bound of optimization iterations | ||||
| #' | ||||
| #' @return List containing the bandwidth \code{h}, optimization objective \code{V} | ||||
| #'     and the matrix \code{B} estimated for the model as a orthogonal basis of the | ||||
| #'     orthogonal space spaned by \code{V}. | ||||
| #' | ||||
| #' @rdname optStiefel | ||||
| #' @name optStiefel | ||||
| #' @keywords internal | ||||
| NULL | ||||
| 
 | ||||
| #' Estimated bandwidth for CVE. | ||||
| #' | ||||
| #' Estimates a propper bandwidth \code{h} according | ||||
| #' \deqn{h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)\frac{2 tr(\Sigma)}{p}}{% | ||||
| #'       h = qchisq( (nObs - 1)/(n - 1), p - q ) 2 tr(Sigma) / p} | ||||
| #' | ||||
| #' @param X data matrix of dimension (n x p) with n data points X_i of dimension | ||||
| #'  q. Therefor each row represents a datapoint of dimension p. | ||||
| #' @param k Guess for rank(B). | ||||
| #' @param nObs Ether numeric of a function. If specified as numeric value | ||||
| #'  its used in the computation of the bandwidth directly. If its a function | ||||
| #'  `nObs` is evaluated as \code{nObs(nrow(x))}. The default behaviou if not | ||||
| #'  supplied at all is to use \code{nObs <- nrow(x)^0.5}. | ||||
| #' | ||||
| #' @seealso [qchisq()] | ||||
| #' | ||||
| #' @export | ||||
| estimateBandwidth <- function(X, k, nObs) { | ||||
|     .Call('_CVE_estimateBandwidth', PACKAGE = 'CVE', X, k, nObs) | ||||
| } | ||||
| 
 | ||||
| #' Random element from Stiefel Manifold `S(p, q)`. | ||||
| #' | ||||
| #' Draws an element of \eqn{S(p, q)} which is the Stiefel Manifold. | ||||
| #' This is done by taking the Q-component of the QR decomposition | ||||
| #' from a `(p, q)` Matrix with independent standart normal entries. | ||||
| #' As a semi-orthogonal Matrix the result `V` satisfies \eqn{V'V = I_q}. | ||||
| #' | ||||
| #' @param p Row dimension | ||||
| #' @param q Column dimension | ||||
| #' | ||||
| #' @return Matrix of dim `(p, q)`. | ||||
| #' | ||||
| #' @seealso <https://en.wikipedia.org/wiki/Stiefel_manifold> | ||||
| #' | ||||
| #' @export | ||||
| rStiefel <- function(p, q) { | ||||
|     .Call('_CVE_rStiefel', PACKAGE = 'CVE', p, q) | ||||
| } | ||||
| 
 | ||||
| #' Conditional Variance Estimation (CVE) method. | ||||
| #' | ||||
| #' This version uses a "simple" stiefel optimization schema. | ||||
| #' | ||||
| #' @param X data points | ||||
| #' @param Y response | ||||
| #' @param k assumed \eqn{rank(B)} | ||||
| #' @param nObs parameter for bandwidth estimation, typical value | ||||
| #'     \code{nObs = nrow(X)^lambda} with \code{lambda} in the range [0.3, 0.8]. | ||||
| #' @param tau Initial step size (default 1) | ||||
| #' @param tol Tolerance for update error used for stopping criterion (default 1e-5) | ||||
| #' @param slack Ratio of small negative error allowed in loss optimization (default -1e-10) | ||||
| #' @param maxIter Upper bound of optimization iterations (default 50) | ||||
| #' @param attempts Number of tryes with new random optimization starting points (default 10) | ||||
| #' | ||||
| #' @return List containing the bandwidth \code{h}, optimization objective \code{V} | ||||
| #'     and the matrix \code{B} estimated for the model as a orthogonal basis of the | ||||
| #'     orthogonal space spaned by \code{V}. | ||||
| #' | ||||
| #' @rdname cve_cpp_V1 | ||||
| #' @export | ||||
| cve_cpp <- function(X, Y, k, nObs, tauInitial = 1., tol = 1e-5, slack = -1e-10, maxIter = 50L, attempts = 10L) { | ||||
|     .Call('_CVE_cve_cpp', PACKAGE = 'CVE', X, Y, k, nObs, tauInitial, tol, slack, maxIter, attempts) | ||||
| } | ||||
| 
 | ||||
							
								
								
									
										13
									
								
								CVE/R/package.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								CVE/R/package.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,13 @@ | ||||
| #' Conditional Variance Estimator (CVE) | ||||
| #' | ||||
| #' Conditional Variance Estimator for Sufficient Dimension | ||||
| #'  Reduction | ||||
| #' | ||||
| #' TODO: And some details | ||||
| #' | ||||
| #' @docType package | ||||
| #' @author Loki | ||||
| #' @import Rcpp | ||||
| #' @importFrom Rcpp evalCpp | ||||
| #' @useDynLib CVE | ||||
| "_PACKAGE" | ||||
							
								
								
									
										
											BIN
										
									
								
								CVE/inst/doc/CVE_paper.pdf
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								CVE/inst/doc/CVE_paper.pdf
									
									
									
									
									
										Executable file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										17
									
								
								CVE/man/CVE-package.Rd
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								CVE/man/CVE-package.Rd
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,17 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/package.R | ||||
| \docType{package} | ||||
| \name{CVE-package} | ||||
| \alias{CVE} | ||||
| \alias{CVE-package} | ||||
| \title{Conditional Variance Estimator (CVE)} | ||||
| \description{ | ||||
| Conditional Variance Estimator for Sufficient Dimension | ||||
|  Reduction | ||||
| } | ||||
| \details{ | ||||
| TODO: And some details | ||||
| } | ||||
| \author{ | ||||
| Loki | ||||
| } | ||||
							
								
								
									
										32
									
								
								CVE/man/cve.Rd
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								CVE/man/cve.Rd
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,32 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/CVE.R | ||||
| \name{cve} | ||||
| \alias{cve} | ||||
| \title{Conditional Variance Estimator} | ||||
| \usage{ | ||||
| cve(X, Y, k, nObs = sqrt(nrow(X)), tauInitial = 1, tol = 0.001, | ||||
|   slack = -1e-10, maxIter = 50L, attempts = 10L) | ||||
| } | ||||
| \arguments{ | ||||
| \item{X}{A matrix of type numeric of dimensions N times dim where N is the number | ||||
| of entries with dim as data dimension.} | ||||
| 
 | ||||
| \item{Y}{A vector of type numeric of length N (coresponds to \code{x}).} | ||||
| 
 | ||||
| \item{k}{Guess for rank(B).} | ||||
| 
 | ||||
| \item{nObs}{As describet in the paper.} | ||||
| 
 | ||||
| \item{tol}{Tolerance for optimization stopping creteria.} | ||||
| } | ||||
| \description{ | ||||
| Conditional Variance Estimator (CVE) is a novel sufficient dimension | ||||
|  reduction (SDR) method for regressions satisfying E(Y|X) = E(Y|B'X), | ||||
|  where B'X is a lower dimensional projection of the predictors. | ||||
| } | ||||
| \references{ | ||||
| Fertl Likas, Bura Efstathia. Conditional Variance Estimation for Sufficient Dimension Reduction, 2019 | ||||
| } | ||||
| \seealso{ | ||||
| TODO: \code{vignette("CVE_paper", package="CVE")}. | ||||
| } | ||||
							
								
								
									
										37
									
								
								CVE/man/cve_cpp_V1.Rd
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								CVE/man/cve_cpp_V1.Rd
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,37 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/RcppExports.R | ||||
| \name{cve_cpp} | ||||
| \alias{cve_cpp} | ||||
| \title{Conditional Variance Estimation (CVE) method.} | ||||
| \usage{ | ||||
| cve_cpp(X, Y, k, nObs, tauInitial = 1, tol = 1e-05, slack = -1e-10, | ||||
|   maxIter = 50L, attempts = 10L) | ||||
| } | ||||
| \arguments{ | ||||
| \item{X}{data points} | ||||
| 
 | ||||
| \item{Y}{response} | ||||
| 
 | ||||
| \item{k}{assumed \eqn{rank(B)}} | ||||
| 
 | ||||
| \item{nObs}{parameter for bandwidth estimation, typical value | ||||
| \code{nObs = nrow(X)^lambda} with \code{lambda} in the range [0.3, 0.8].} | ||||
| 
 | ||||
| \item{tol}{Tolerance for update error used for stopping criterion (default 1e-5)} | ||||
| 
 | ||||
| \item{slack}{Ratio of small negative error allowed in loss optimization (default -1e-10)} | ||||
| 
 | ||||
| \item{maxIter}{Upper bound of optimization iterations (default 50)} | ||||
| 
 | ||||
| \item{attempts}{Number of tryes with new random optimization starting points (default 10)} | ||||
| 
 | ||||
| \item{tau}{Initial step size (default 1)} | ||||
| } | ||||
| \value{ | ||||
| List containing the bandwidth \code{h}, optimization objective \code{V} | ||||
|     and the matrix \code{B} estimated for the model as a orthogonal basis of the | ||||
|     orthogonal space spaned by \code{V}. | ||||
| } | ||||
| \description{ | ||||
| This version uses a "simple" stiefel optimization schema. | ||||
| } | ||||
							
								
								
									
										65
									
								
								CVE/man/dataset.Rd
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										65
									
								
								CVE/man/dataset.Rd
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,65 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/datasets.R | ||||
| \name{dataset} | ||||
| \alias{dataset} | ||||
| \title{Generates test datasets.} | ||||
| \usage{ | ||||
| dataset(name = "M1", n, B, p.mix = 0.3, lambda = 1) | ||||
| } | ||||
| \arguments{ | ||||
| \item{name}{One of \code{"M1"}, \code{"M2"}, \code{"M3"}, \code{"M4"} or \code{"M5"}} | ||||
| 
 | ||||
| \item{n}{nr samples} | ||||
| 
 | ||||
| \item{p.mix}{Only for \code{"M4"}, see: below.} | ||||
| 
 | ||||
| \item{lambda}{Only for \code{"M4"}, see: below.} | ||||
| 
 | ||||
| \item{p}{Dim. of random variable \code{X}.} | ||||
| } | ||||
| \value{ | ||||
| List with elements | ||||
| \item{X}{data} | ||||
| \item{Y}{response} | ||||
| \item{B}{Used dim-reduction matrix} | ||||
| \item{name}{Name of the dataset (name parameter)} | ||||
| } | ||||
| \description{ | ||||
| Provides sample datasets. There are 5 different datasets named | ||||
| M1, M2, M3, M4 and M5 describet in the paper references below. | ||||
| The general model is given by: | ||||
| \deqn{Y ~ g(B'X) + \epsilon} | ||||
| } | ||||
| \section{M1}{ | ||||
| 
 | ||||
| The data follows \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} for a subspace | ||||
| dimension of \eqn{k = 2} with a default of \eqn{n = 200} data points. | ||||
| The link function \eqn{g} is given as | ||||
| \deqn{g(x) = \frac{x_1}{0.5 + (x_2 + 1.5)^2} + 0.5\epsilon}{g(x) = x_1 / (0.5 + (x_2 + 1.5)^2) + 0.5 epsilon} | ||||
| } | ||||
| 
 | ||||
| \section{M2}{ | ||||
| 
 | ||||
| \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, Sigma)} with \eqn{k = 2} with a default of \eqn{n = 200} data points. | ||||
| The link function \eqn{g} is given as | ||||
| \deqn{g(x) = x_1 x_2^2 + 0.5\epsilon}{g(x) = x_1 x_2^2 + 0.5 epsilon} | ||||
| } | ||||
| 
 | ||||
| \section{M3}{ | ||||
| 
 | ||||
| TODO: | ||||
| } | ||||
| 
 | ||||
| \section{M4}{ | ||||
| 
 | ||||
| TODO: | ||||
| } | ||||
| 
 | ||||
| \section{M5}{ | ||||
| 
 | ||||
| TODO: | ||||
| } | ||||
| 
 | ||||
| \references{ | ||||
| Fertl Likas, Bura Efstathia. Conditional Variance Estimation for Sufficient Dimension Reduction, 2019 | ||||
| } | ||||
							
								
								
									
										27
									
								
								CVE/man/estimateBandwidth.Rd
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								CVE/man/estimateBandwidth.Rd
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,27 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/RcppExports.R | ||||
| \name{estimateBandwidth} | ||||
| \alias{estimateBandwidth} | ||||
| \title{Estimated bandwidth for CVE.} | ||||
| \usage{ | ||||
| estimateBandwidth(X, k, nObs) | ||||
| } | ||||
| \arguments{ | ||||
| \item{X}{data matrix of dimension (n x p) with n data points X_i of dimension | ||||
| q. Therefor each row represents a datapoint of dimension p.} | ||||
| 
 | ||||
| \item{k}{Guess for rank(B).} | ||||
| 
 | ||||
| \item{nObs}{Ether numeric of a function. If specified as numeric value | ||||
| its used in the computation of the bandwidth directly. If its a function | ||||
| `nObs` is evaluated as \code{nObs(nrow(x))}. The default behaviou if not | ||||
| supplied at all is to use \code{nObs <- nrow(x)^0.5}.} | ||||
| } | ||||
| \description{ | ||||
| Estimates a propper bandwidth \code{h} according | ||||
| \deqn{h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)\frac{2 tr(\Sigma)}{p}}{% | ||||
|       h = qchisq( (nObs - 1)/(n - 1), p - q ) 2 tr(Sigma) / p} | ||||
| } | ||||
| \seealso{ | ||||
| [qchisq()] | ||||
| } | ||||
							
								
								
									
										35
									
								
								CVE/man/optStiefel.Rd
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										35
									
								
								CVE/man/optStiefel.Rd
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,35 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/RcppExports.R | ||||
| \name{optStiefel} | ||||
| \alias{optStiefel} | ||||
| \title{Stiefel Optimization.} | ||||
| \arguments{ | ||||
| \item{X}{data points} | ||||
| 
 | ||||
| \item{Y}{response} | ||||
| 
 | ||||
| \item{k}{assumed \eqn{rank(B)}} | ||||
| 
 | ||||
| \item{nObs}{parameter for bandwidth estimation, typical value | ||||
| \code{nObs = nrow(X)^lambda} with \code{lambda} in the range [0.3, 0.8].} | ||||
| 
 | ||||
| \item{tau}{Initial step size} | ||||
| 
 | ||||
| \item{tol}{Tolerance for update error used for stopping criterion | ||||
| \eqn{|| V(j) V(j)' - V(j+1) V(j+1)' ||_2 < tol}{% | ||||
|      \| V_j V_j' - V_{j+1} V_{j+1}' \|_2 < tol}.} | ||||
| 
 | ||||
| \item{maxIter}{Upper bound of optimization iterations} | ||||
| } | ||||
| \value{ | ||||
| List containing the bandwidth \code{h}, optimization objective \code{V} | ||||
|     and the matrix \code{B} estimated for the model as a orthogonal basis of the | ||||
|     orthogonal space spaned by \code{V}. | ||||
| } | ||||
| \description{ | ||||
| Stiefel Optimization for \code{V} given a dataset \code{X} and responces | ||||
| \code{Y} for the model \deqn{Y\sim g(B'X) + \epsilon}{Y ~ g(B'X) + epsilon} | ||||
| to compute the matrix `B` such that \eqn{span{B} = span(V)^{\bot}}{% | ||||
| span(B) = orth(span(B))}. | ||||
| } | ||||
| \keyword{internal} | ||||
							
								
								
									
										25
									
								
								CVE/man/rStiefel.Rd
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										25
									
								
								CVE/man/rStiefel.Rd
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,25 @@ | ||||
| % Generated by roxygen2: do not edit by hand | ||||
| % Please edit documentation in R/RcppExports.R | ||||
| \name{rStiefel} | ||||
| \alias{rStiefel} | ||||
| \title{Random element from Stiefel Manifold `S(p, q)`.} | ||||
| \usage{ | ||||
| rStiefel(p, q) | ||||
| } | ||||
| \arguments{ | ||||
| \item{p}{Row dimension} | ||||
| 
 | ||||
| \item{q}{Column dimension} | ||||
| } | ||||
| \value{ | ||||
| Matrix of dim `(p, q)`. | ||||
| } | ||||
| \description{ | ||||
| Draws an element of \eqn{S(p, q)} which is the Stiefel Manifold. | ||||
| This is done by taking the Q-component of the QR decomposition | ||||
| from a `(p, q)` Matrix with independent standart normal entries. | ||||
| As a semi-orthogonal Matrix the result `V` satisfies \eqn{V'V = I_q}. | ||||
| } | ||||
| \seealso{ | ||||
| <https://en.wikipedia.org/wiki/Stiefel_manifold> | ||||
| } | ||||
							
								
								
									
										285
									
								
								CVE/src/CVE.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										285
									
								
								CVE/src/CVE.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,285 @@ | ||||
| //
 | ||||
| // Usage:
 | ||||
| //  ~$ R -e "library(Rcpp); Rcpp::sourceCpp('cve_V1.cpp')"
 | ||||
| //
 | ||||
| 
 | ||||
| // only `RcppArmadillo.h` which includes `Rcpp.h`
 | ||||
| #include <RcppArmadillo.h> | ||||
| 
 | ||||
| // through the depends attribute `Rcpp` is tolled to create
 | ||||
| // hooks for `RcppArmadillo` needed by the build process.
 | ||||
| //
 | ||||
| // [[Rcpp::depends(RcppArmadillo)]]
 | ||||
| 
 | ||||
| // required for `R::qchisq()` used in `estimateBandwidth()`
 | ||||
| #include <Rmath.h> | ||||
| 
 | ||||
| //' Estimated bandwidth for CVE.
 | ||||
| //'
 | ||||
| //' Estimates a propper bandwidth \code{h} according
 | ||||
| //' \deqn{h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)\frac{2 tr(\Sigma)}{p}}{%
 | ||||
| //'       h = qchisq( (nObs - 1)/(n - 1), p - q ) 2 tr(Sigma) / p}
 | ||||
| //'
 | ||||
| //' @param X data matrix of dimension (n x p) with n data points X_i of dimension
 | ||||
| //'  q. Therefor each row represents a datapoint of dimension p.
 | ||||
| //' @param k Guess for rank(B).
 | ||||
| //' @param nObs Ether numeric of a function. If specified as numeric value
 | ||||
| //'  its used in the computation of the bandwidth directly. If its a function
 | ||||
| //'  `nObs` is evaluated as \code{nObs(nrow(x))}. The default behaviou if not
 | ||||
| //'  supplied at all is to use \code{nObs <- nrow(x)^0.5}.
 | ||||
| //'
 | ||||
| //' @seealso [qchisq()]
 | ||||
| //'
 | ||||
| //' @export
 | ||||
| // [[Rcpp::export]]
 | ||||
| double estimateBandwidth(const arma::mat& X, arma::uword k, double nObs) { | ||||
|     using namespace arma; | ||||
| 
 | ||||
|     uword n = X.n_rows; // nr samples
 | ||||
|     uword p = X.n_cols; // dimension of rand. var. `X`
 | ||||
| 
 | ||||
|     // column mean
 | ||||
|     mat M = mean(X); | ||||
|     // center `X`
 | ||||
|     mat C = X.each_row() - M; | ||||
|     // trace of covariance matrix, `traceSigma = Tr(C' C)`
 | ||||
|     double traceSigma = accu(C % C); | ||||
|     // compute estimated bandwidth
 | ||||
|     double qchi2 = R::qchisq((nObs - 1.0) / (n - 1), static_cast<double>(k), 1, 0); | ||||
| 
 | ||||
|     return 2.0 * qchi2 * traceSigma / (p * n); | ||||
| } | ||||
| 
 | ||||
| //' Random element from Stiefel Manifold `S(p, q)`.
 | ||||
| //'
 | ||||
| //' Draws an element of \eqn{S(p, q)} which is the Stiefel Manifold.
 | ||||
| //' This is done by taking the Q-component of the QR decomposition
 | ||||
| //' from a `(p, q)` Matrix with independent standart normal entries.
 | ||||
| //' As a semi-orthogonal Matrix the result `V` satisfies \eqn{V'V = I_q}.
 | ||||
| //'
 | ||||
| //' @param p Row dimension
 | ||||
| //' @param q Column dimension
 | ||||
| //'
 | ||||
| //' @return Matrix of dim `(p, q)`.
 | ||||
| //'
 | ||||
| //' @seealso <https://en.wikipedia.org/wiki/Stiefel_manifold>
 | ||||
| //'
 | ||||
| //' @export
 | ||||
| // [[Rcpp::export]]
 | ||||
| arma::mat rStiefel(arma::uword p, arma::uword q) { | ||||
|     arma::mat Q, R; | ||||
|     arma::qr_econ(Q, R, arma::randn<arma::mat>(p, q)); | ||||
|     return Q; | ||||
| } | ||||
| 
 | ||||
| double gradient(const arma::mat& X, | ||||
|                 const arma::mat& X_diff, | ||||
|                 const arma::mat& Y, | ||||
|                 const arma::mat& Y_rep, | ||||
|                 const arma::mat& V, | ||||
|                 const double h, | ||||
|                 arma::mat* G = 0 | ||||
| ) { | ||||
|     using namespace arma; | ||||
| 
 | ||||
|     uword n = X.n_rows; | ||||
|     uword p = X.n_cols; | ||||
| 
 | ||||
|     // orthogonal projection matrix `Q = I - VV'` for dist computation
 | ||||
|     mat Q = -(V * V.t()); | ||||
|     Q.diag() += 1; | ||||
|     // calc pairwise distances as `D` with `D(i, j) = d_i(V, X_j)`
 | ||||
|     vec D_vec = sum(square(X_diff * Q), 1); | ||||
|     mat D = reshape(D_vec, n, n); | ||||
|     // calc weights as `W` with `W(i, j) = w_i(V, X_j)`
 | ||||
|     mat W = exp(D / (-2.0 * h)); | ||||
|     // column-wise normalization via 1-norm
 | ||||
|     W = normalise(W, 1); | ||||
|     vec W_vec = vectorise(W); | ||||
|     // weighted `Y` means (first and second order)
 | ||||
|     vec y1 = W.t() * Y; | ||||
|     vec y2 = W.t() * square(Y); | ||||
|     // loss for each `X_i`, meaning `L(i) = L_n(V, X_i)`
 | ||||
|     vec L = y2 - square(y1); | ||||
|     // `loss = L_n(V)`
 | ||||
|     double loss = mean(L); | ||||
|     // check if gradient as output variable is set
 | ||||
|     if (G != 0) { | ||||
|         // `G = grad(L_n(V))` a.k.a. gradient of `L` with respect to `V`
 | ||||
|         vec scale = (repelem(L, n, 1) - square(Y_rep - repelem(y1, n, 1))) % W_vec % D_vec; | ||||
|         mat X_diff_scale = X_diff.each_col() % scale; | ||||
|         (*G) = X_diff_scale.t() * X_diff * V; | ||||
|         (*G) *= -2.0 / (h * h * n); | ||||
|     } | ||||
| 
 | ||||
|     return loss; | ||||
| } | ||||
| 
 | ||||
| //' Stiefel Optimization.
 | ||||
| //'
 | ||||
| //' Stiefel Optimization for \code{V} given a dataset \code{X} and responces
 | ||||
| //' \code{Y} for the model \deqn{Y\sim g(B'X) + \epsilon}{Y ~ g(B'X) + epsilon}
 | ||||
| //' to compute the matrix `B` such that \eqn{span{B} = span(V)^{\bot}}{%
 | ||||
| //' span(B) = orth(span(B))}.
 | ||||
| //'
 | ||||
| //' @param X data points
 | ||||
| //' @param Y response
 | ||||
| //' @param k assumed \eqn{rank(B)}
 | ||||
| //' @param nObs parameter for bandwidth estimation, typical value
 | ||||
| //'     \code{nObs = nrow(X)^lambda} with \code{lambda} in the range [0.3, 0.8].
 | ||||
| //' @param tau Initial step size
 | ||||
| //' @param tol Tolerance for update error used for stopping criterion
 | ||||
| //'     \eqn{|| V(j) V(j)' - V(j+1) V(j+1)' ||_2 < tol}{%
 | ||||
| //'          \| V_j V_j' - V_{j+1} V_{j+1}' \|_2 < tol}.
 | ||||
| //' @param maxIter Upper bound of optimization iterations
 | ||||
| //'
 | ||||
| //' @return List containing the bandwidth \code{h}, optimization objective \code{V}
 | ||||
| //'     and the matrix \code{B} estimated for the model as a orthogonal basis of the
 | ||||
| //'     orthogonal space spaned by \code{V}.
 | ||||
| //'
 | ||||
| //' @rdname optStiefel
 | ||||
| //' @name optStiefel
 | ||||
| //' @keywords internal
 | ||||
| double optStiefel( | ||||
|         const arma::mat& X, | ||||
|         const arma::vec& Y, | ||||
|         const int k, | ||||
|         const double h, | ||||
|         const double tauInitial, | ||||
|         const double tol, | ||||
|         const double slack, | ||||
|         const int maxIter, | ||||
|         arma::mat& V, // out
 | ||||
|         arma::vec& history // out
 | ||||
| ) { | ||||
|     using namespace arma; | ||||
| 
 | ||||
|     // get dimensions
 | ||||
|     const uword n = X.n_rows; // nr samples
 | ||||
|     const uword p = X.n_cols; // dim of random variable `X`
 | ||||
|     const uword q = p - k;    // rank(V) e.g. dim of ortho space of span{B}
 | ||||
| 
 | ||||
|     // all `X_i - X_j` differences, `X_diff.row(i * n + j) = X_i - X_j`
 | ||||
|     mat X_diff(n * n, p); | ||||
|     for (uword i = 0, k = 0; i < n; ++i) { | ||||
|         for (uword j = 0; j < n; ++j) { | ||||
|             X_diff.row(k++) = X.row(i) - X.row(j); | ||||
|         } | ||||
|     } | ||||
|     const vec Y_rep = repmat(Y, n, 1); | ||||
|     const mat I_p = eye<mat>(p, p); | ||||
| 
 | ||||
|     // initial start value for `V`
 | ||||
|     V = rStiefel(p, q); | ||||
| 
 | ||||
|     // init optimization `loss`es, `error` and stepsize `tau`
 | ||||
|     // double loss_next = datum::inf;
 | ||||
|     double loss; | ||||
|     double error = datum::inf; | ||||
|     double tau = tauInitial; | ||||
|     int count; | ||||
|     // main optimization loop
 | ||||
|     for (count = 0; count < maxIter && error > tol; ++count) { | ||||
|         // calc gradient `G = grad_V(L)(V)`
 | ||||
|         mat G; | ||||
|         loss = gradient(X, X_diff, Y, Y_rep, V, h, &G); | ||||
|         // matrix `A` for colescy-transform of the gradient
 | ||||
|         mat A = tau * ((G * V.t()) - (V * G.t())); | ||||
|         // next iteration step of `V`
 | ||||
|         mat V_tau = inv(I_p + A) * (I_p - A) * V; | ||||
|         // loss after step `L(V(tau))`
 | ||||
|         double loss_tau = gradient(X, X_diff, Y, Y_rep, V_tau, h); | ||||
| 
 | ||||
|         // store `loss` in `history` and increase `count`
 | ||||
|         history(count) = loss; | ||||
| 
 | ||||
|         // validate if loss decreased
 | ||||
|         if ((loss_tau - loss) > slack * loss) { | ||||
|             // ignore step, retry with half the step size
 | ||||
|             tau = tau / 2.; | ||||
|             error = datum::inf; | ||||
|         } else { | ||||
|             // compute step error (break condition)
 | ||||
|             error = norm((V * V.t()) - (V_tau * V_tau.t()), 2) / (2 * q); | ||||
|             // shift for next iteration
 | ||||
|             V = V_tau; | ||||
|             loss = loss_tau; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     // store final `loss`
 | ||||
|     history(count) = loss; | ||||
| 
 | ||||
|     return loss; | ||||
| } | ||||
| 
 | ||||
| //' Conditional Variance Estimation (CVE) method.
 | ||||
| //'
 | ||||
| //' This version uses a "simple" stiefel optimization schema.
 | ||||
| //'
 | ||||
| //' @param X data points
 | ||||
| //' @param Y response
 | ||||
| //' @param k assumed \eqn{rank(B)}
 | ||||
| //' @param nObs parameter for bandwidth estimation, typical value
 | ||||
| //'     \code{nObs = nrow(X)^lambda} with \code{lambda} in the range [0.3, 0.8].
 | ||||
| //' @param tau Initial step size (default 1)
 | ||||
| //' @param tol Tolerance for update error used for stopping criterion (default 1e-5)
 | ||||
| //' @param slack Ratio of small negative error allowed in loss optimization (default -1e-10)
 | ||||
| //' @param maxIter Upper bound of optimization iterations (default 50)
 | ||||
| //' @param attempts Number of tryes with new random optimization starting points (default 10)
 | ||||
| //'
 | ||||
| //' @return List containing the bandwidth \code{h}, optimization objective \code{V}
 | ||||
| //'     and the matrix \code{B} estimated for the model as a orthogonal basis of the
 | ||||
| //'     orthogonal space spaned by \code{V}.
 | ||||
| //'
 | ||||
| //' @rdname cve_cpp_V1
 | ||||
| //' @export
 | ||||
| // [[Rcpp::export]]
 | ||||
| Rcpp::List cve_cpp( | ||||
|         const arma::mat& X, | ||||
|         const arma::vec& Y, | ||||
|         const int k, | ||||
|         const double nObs, | ||||
|         const double tauInitial = 1., | ||||
|         const double tol = 1e-5, | ||||
|         const double slack = -1e-10, | ||||
|         const int maxIter = 50, | ||||
|         const int attempts = 10 | ||||
| ) { | ||||
|     using namespace arma; | ||||
| 
 | ||||
|     // tracker of current best results
 | ||||
|     mat V_best; | ||||
|     double loss_best = datum::inf; | ||||
|     // estimate bandwidth
 | ||||
|     double h = estimateBandwidth(X, k, nObs); | ||||
| 
 | ||||
|     // loss history for each optimization attempt
 | ||||
|     // each column contaions the iteration history for the loss
 | ||||
|     mat history = mat(maxIter + 1, attempts); | ||||
| 
 | ||||
|     // multiple stiefel optimization attempts
 | ||||
|     for (int i = 0; i < attempts; ++i) { | ||||
|         // declare output variables
 | ||||
|         mat V; // estimated `V` space
 | ||||
|         vec hist = vec(history.n_rows, fill::zeros); // optimization history
 | ||||
|         double loss = optStiefel(X, Y, k, h, tauInitial, tol, slack, maxIter, V, hist); | ||||
|         if (loss < loss_best) { | ||||
|             loss_best = loss; | ||||
|             V_best = V; | ||||
|         } | ||||
|         // write history to history collection
 | ||||
|         history.col(i) = hist; | ||||
|     } | ||||
| 
 | ||||
|     // get `B` as kernal of `V.t()`
 | ||||
|     mat B = null(V_best.t()); | ||||
| 
 | ||||
|     return Rcpp::List::create( | ||||
|         Rcpp::Named("history") = history, | ||||
|         Rcpp::Named("loss") = loss_best, | ||||
|         Rcpp::Named("h") = h, | ||||
|         Rcpp::Named("V") = V_best, | ||||
|         Rcpp::Named("B") = B | ||||
|     ); | ||||
| } | ||||
							
								
								
									
										64
									
								
								CVE/src/RcppExports.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										64
									
								
								CVE/src/RcppExports.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,64 @@ | ||||
| // Generated by using Rcpp::compileAttributes() -> do not edit by hand
 | ||||
| // Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
 | ||||
| 
 | ||||
| #include <RcppArmadillo.h> | ||||
| #include <Rcpp.h> | ||||
| 
 | ||||
| using namespace Rcpp; | ||||
| 
 | ||||
| // estimateBandwidth
 | ||||
| double estimateBandwidth(const arma::mat& X, arma::uword k, double nObs); | ||||
| RcppExport SEXP _CVE_estimateBandwidth(SEXP XSEXP, SEXP kSEXP, SEXP nObsSEXP) { | ||||
| BEGIN_RCPP | ||||
|     Rcpp::RObject rcpp_result_gen; | ||||
|     Rcpp::RNGScope rcpp_rngScope_gen; | ||||
|     Rcpp::traits::input_parameter< const arma::mat& >::type X(XSEXP); | ||||
|     Rcpp::traits::input_parameter< arma::uword >::type k(kSEXP); | ||||
|     Rcpp::traits::input_parameter< double >::type nObs(nObsSEXP); | ||||
|     rcpp_result_gen = Rcpp::wrap(estimateBandwidth(X, k, nObs)); | ||||
|     return rcpp_result_gen; | ||||
| END_RCPP | ||||
| } | ||||
| // rStiefel
 | ||||
| arma::mat rStiefel(arma::uword p, arma::uword q); | ||||
| RcppExport SEXP _CVE_rStiefel(SEXP pSEXP, SEXP qSEXP) { | ||||
| BEGIN_RCPP | ||||
|     Rcpp::RObject rcpp_result_gen; | ||||
|     Rcpp::RNGScope rcpp_rngScope_gen; | ||||
|     Rcpp::traits::input_parameter< arma::uword >::type p(pSEXP); | ||||
|     Rcpp::traits::input_parameter< arma::uword >::type q(qSEXP); | ||||
|     rcpp_result_gen = Rcpp::wrap(rStiefel(p, q)); | ||||
|     return rcpp_result_gen; | ||||
| END_RCPP | ||||
| } | ||||
| // cve_cpp
 | ||||
| Rcpp::List cve_cpp(const arma::mat& X, const arma::vec& Y, const int k, const double nObs, const double tauInitial, const double tol, const double slack, const int maxIter, const int attempts); | ||||
| RcppExport SEXP _CVE_cve_cpp(SEXP XSEXP, SEXP YSEXP, SEXP kSEXP, SEXP nObsSEXP, SEXP tauInitialSEXP, SEXP tolSEXP, SEXP slackSEXP, SEXP maxIterSEXP, SEXP attemptsSEXP) { | ||||
| BEGIN_RCPP | ||||
|     Rcpp::RObject rcpp_result_gen; | ||||
|     Rcpp::RNGScope rcpp_rngScope_gen; | ||||
|     Rcpp::traits::input_parameter< const arma::mat& >::type X(XSEXP); | ||||
|     Rcpp::traits::input_parameter< const arma::vec& >::type Y(YSEXP); | ||||
|     Rcpp::traits::input_parameter< const int >::type k(kSEXP); | ||||
|     Rcpp::traits::input_parameter< const double >::type nObs(nObsSEXP); | ||||
|     Rcpp::traits::input_parameter< const double >::type tauInitial(tauInitialSEXP); | ||||
|     Rcpp::traits::input_parameter< const double >::type tol(tolSEXP); | ||||
|     Rcpp::traits::input_parameter< const double >::type slack(slackSEXP); | ||||
|     Rcpp::traits::input_parameter< const int >::type maxIter(maxIterSEXP); | ||||
|     Rcpp::traits::input_parameter< const int >::type attempts(attemptsSEXP); | ||||
|     rcpp_result_gen = Rcpp::wrap(cve_cpp(X, Y, k, nObs, tauInitial, tol, slack, maxIter, attempts)); | ||||
|     return rcpp_result_gen; | ||||
| END_RCPP | ||||
| } | ||||
| 
 | ||||
| static const R_CallMethodDef CallEntries[] = { | ||||
|     {"_CVE_estimateBandwidth", (DL_FUNC) &_CVE_estimateBandwidth, 3}, | ||||
|     {"_CVE_rStiefel", (DL_FUNC) &_CVE_rStiefel, 2}, | ||||
|     {"_CVE_cve_cpp", (DL_FUNC) &_CVE_cve_cpp, 9}, | ||||
|     {NULL, NULL, 0} | ||||
| }; | ||||
| 
 | ||||
| RcppExport void R_init_CVE(DllInfo *dll) { | ||||
|     R_registerRoutines(dll, NULL, CallEntries, NULL, NULL); | ||||
|     R_useDynamicSymbols(dll, FALSE); | ||||
| } | ||||
							
								
								
									
										13
									
								
								cve_V0.R
									
									
									
									
									
								
							
							
						
						
									
										13
									
								
								cve_V0.R
									
									
									
									
									
								
							| @ -2,14 +2,14 @@ | ||||
| #' Euclidean vector norm (2-norm) | ||||
| #' | ||||
| #' @param x Numeric vector | ||||
| #' @returns Numeric | ||||
| #' @return Numeric | ||||
| norm2 <- function(x) { return(sum(x^2)) } | ||||
| 
 | ||||
| #' Samples uniform from the Stiefel Manifold | ||||
| #' | ||||
| #' @param p row dim. | ||||
| #' @param q col dim. | ||||
| #' @returns `(p, q)` semi-orthogonal matrix | ||||
| #' @return `(p, q)` semi-orthogonal matrix | ||||
| rStiefl <- function(p, q) { | ||||
|     return(qr.Q(qr(matrix(rnorm(p * q, 0, 1), p, q)))) | ||||
| } | ||||
| @ -17,7 +17,7 @@ rStiefl <- function(p, q) { | ||||
| #' Matrix Trace | ||||
| #' | ||||
| #' @param M Square matrix | ||||
| #' @returns Trace \eqn{Tr(M)} | ||||
| #' @return Trace \eqn{Tr(M)} | ||||
| Tr <- function(M) { | ||||
|     return(sum(diag(M))) | ||||
| } | ||||
| @ -25,7 +25,7 @@ Tr <- function(M) { | ||||
| #' Null space basis of given matrix `B` | ||||
| #' | ||||
| #' @param B `(p, q)` matrix | ||||
| #' @returns Semi-orthogonal `(p, p - q)` matrix `Q` spaning the null space of `B` | ||||
| #' @return Semi-orthogonal `(p, p - q)` matrix `Q` spaning the null space of `B` | ||||
| null <- function(M) { | ||||
|     tmp <- qr(M) | ||||
|     set <- if(tmp$rank == 0L) seq_len(ncol(M)) else -seq_len(tmp$rank) | ||||
| @ -60,8 +60,7 @@ estimateBandwidth<-function(X, k, nObs) { | ||||
| # if grad=T, gradient of L(V) also returned | ||||
| LV <- function(V, Xl, dtemp, h, q, Y, grad = TRUE) { | ||||
|   N <- length(Y) | ||||
|   if (is.vector(V)) { k <- 1 } | ||||
|   else { k <- length(V[1,]) } | ||||
|   k <- if (is.vector(V)) { 1 } else { ncol(V) } | ||||
|   Xlv <- Xl %*% V | ||||
|   d <- dtemp - ((Xlv^2) %*% rep(1, k)) | ||||
|   w <- dnorm(d / h) / dnorm(0) | ||||
| @ -108,7 +107,7 @@ LV <- function(V, Xl, dtemp, h, q, Y, grad = TRUE) { | ||||
| #aov_dat... (L_tilde_n(Vhat_k,X_i))_{i=1,..,N} | ||||
| #count...number of iterations  | ||||
| #h...bandwidth | ||||
| cve_legacy <- function( | ||||
| cve_R <- function( | ||||
|         X, Y, k, | ||||
|         nObs = sqrt(nrow(X)), | ||||
|         tauInitial = 1.0, | ||||
|  | ||||
| @ -1,4 +1,6 @@ | ||||
| //
 | ||||
| // Standalone implementation for development.
 | ||||
| //
 | ||||
| // Usage:
 | ||||
| //  ~$ R -e "library(Rcpp); Rcpp::sourceCpp('cve_V1.cpp')"
 | ||||
| //
 | ||||
| @ -17,7 +19,7 @@ | ||||
| //' Estimated bandwidth for CVE.
 | ||||
| //'
 | ||||
| //' Estimates a propper bandwidth \code{h} according
 | ||||
| //' \deqn{h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)}\frac{2 tr(\Sigma)}{p}}{%
 | ||||
| //' \deqn{h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)\frac{2 tr(\Sigma)}{p}}{%
 | ||||
| //'       h = qchisq( (nObs - 1)/(n - 1), p - q ) 2 tr(Sigma) / p}
 | ||||
| //'
 | ||||
| //' @param X data matrix of dimension (n x p) with n data points X_i of dimension
 | ||||
| @ -60,7 +62,7 @@ double estimateBandwidth(const arma::mat& X, arma::uword k, double nObs) { | ||||
| //' @param p Row dimension
 | ||||
| //' @param q Column dimension
 | ||||
| //'
 | ||||
| //' @returns Matrix of dim `(p, q)`.
 | ||||
| //' @return Matrix of dim `(p, q)`.
 | ||||
| //'
 | ||||
| //' @seealso <https://en.wikipedia.org/wiki/Stiefel_manifold>
 | ||||
| //'
 | ||||
| @ -138,6 +140,7 @@ double gradient(const arma::mat& X, | ||||
| //'     orthogonal space spaned by \code{V}.
 | ||||
| //'
 | ||||
| //' @rdname optStiefel
 | ||||
| //' @keywords internal
 | ||||
| double optStiefel( | ||||
|         const arma::mat& X, | ||||
|         const arma::vec& Y, | ||||
|  | ||||
| @ -1,4 +1,5 @@ | ||||
| // -*- mode: C++; c-indent-level: 4; c-basic-offset: 4; indent-tabs-mode: nil; -*-
 | ||||
| //
 | ||||
| // Standalone implementation for development.
 | ||||
| //
 | ||||
| // Usage:
 | ||||
| //  ~$ R -e "library(Rcpp); Rcpp::sourceCpp('cve_V2.cpp')"
 | ||||
| @ -18,7 +19,7 @@ | ||||
| //' Estimated bandwidth for CVE.
 | ||||
| //'
 | ||||
| //' Estimates a propper bandwidth \code{h} according
 | ||||
| //' \deqn{h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)}\frac{2 tr(\Sigma)}{p}}{%
 | ||||
| //' \deqn{h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)\frac{2 tr(\Sigma)}{p}}{%
 | ||||
| //'       h = qchisq( (nObs - 1)/(n - 1), p - q ) 2 tr(Sigma) / p}
 | ||||
| //'
 | ||||
| //' @param X data matrix of dimension (n x p) with n data points X_i of dimension
 | ||||
| @ -61,7 +62,7 @@ double estimateBandwidth(const arma::mat& X, arma::uword k, double nObs) { | ||||
| //' @param p Row dimension
 | ||||
| //' @param q Column dimension
 | ||||
| //'
 | ||||
| //' @returns Matrix of dim `(p, q)`.
 | ||||
| //' @return Matrix of dim `(p, q)`.
 | ||||
| //'
 | ||||
| //' @seealso <https://en.wikipedia.org/wiki/Stiefel_manifold>
 | ||||
| //'
 | ||||
| @ -141,6 +142,7 @@ double gradient(const arma::mat& X, | ||||
| //'     orthogonal space spaned by \code{V}.
 | ||||
| //'
 | ||||
| //' @rdname optStiefel
 | ||||
| //' @keywords internal
 | ||||
| double optStiefel( | ||||
|         const arma::mat& X, | ||||
|         const arma::vec& Y, | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user