add: multivariate response to tensorflow wip.
This commit is contained in:
parent
4a950d6df2
commit
025b9eb2af
|
@ -43,6 +43,7 @@ tf_constant <- function(obj, dtype = "float32", ...) {
|
|||
|
||||
cve.tf <- function(X, Y, k, h = estimate.bandwidth(X, k, sqrt(nrow(X))),
|
||||
V.init = NULL, optimizer_initialier = tf$optimizers$RMSprop, attempts = 10L,
|
||||
nr.projections = nrow(X)^(3 / 2),
|
||||
sd_noise = 0, method = c("simple", "weighted")
|
||||
) {
|
||||
method <- match.arg(method)
|
||||
|
@ -55,15 +56,25 @@ cve.tf <- function(X, Y, k, h = estimate.bandwidth(X, k, sqrt(nrow(X))),
|
|||
k <- as.integer(k)
|
||||
q <- p - k
|
||||
|
||||
if (!is.matrix(Y))
|
||||
Y <- as.matrix(Y)
|
||||
|
||||
# Projective resampling.
|
||||
if (ncol(Y) > 1L) {
|
||||
R <- matrix(rnorm(ncol(Y) * nr.projections), ncol(Y))
|
||||
R <- t(t(R) / sqrt(colSums(R^2)))
|
||||
Y <- Y %*% R
|
||||
}
|
||||
|
||||
X <- tf_constant(scale(X))
|
||||
Y <- tf_constant(scale(as.matrix(Y)))
|
||||
Y <- tf_constant(scale(Y))
|
||||
I <- tf_constant(diag(1, p))
|
||||
h <- tf_Variable(h)
|
||||
|
||||
loss <- tf_function(function(V) {
|
||||
Q <- I - tf$matmul(V, V, transpose_b = TRUE)
|
||||
if (sd_noise > 0)
|
||||
XQ <- tf$matmul(X + tf$random$normal(list(n, p), stddev = 0.05), Q)
|
||||
XQ <- tf$matmul(X + tf$random$normal(list(n, p), stddev = sd_noise), Q)
|
||||
else
|
||||
XQ <- tf$matmul(X, Q)
|
||||
S <- tf$matmul(XQ, XQ, transpose_b = TRUE)
|
||||
|
@ -76,9 +87,10 @@ cve.tf <- function(X, Y, k, h = estimate.bandwidth(X, k, sqrt(nrow(X))),
|
|||
if (method == "simple") {
|
||||
l <- tf$reduce_mean(y2 - tf$pow(y1, 2L))
|
||||
} else {# weighted
|
||||
w <- tf$reduce_sum(K, 1L, keepdims = TRUE) - `1` # TODO: check/fix
|
||||
w <- w - `1`
|
||||
w <- w / tf$reduce_sum(w)
|
||||
l <- tf$reduce_sum(w * (y2 - tf$pow(y1, 2L)))
|
||||
l <- l / tf$cast(tf$shape(Y)[2], "float32")
|
||||
}
|
||||
l
|
||||
})
|
||||
|
@ -129,36 +141,58 @@ plot.sim <- function(sim) {
|
|||
lines(density(ssd, from = 0, to = 1))
|
||||
stat <- c(Median = median(ssd), Mean = mean(ssd))
|
||||
abline(v = stat, lty = 2)
|
||||
text(stat, 1.02 * max(h$density), names(stat),
|
||||
text(stat, max(h$density), names(stat),
|
||||
pos = if(diff(stat) > 0) c("2", "4") else c("4", "2"))
|
||||
}
|
||||
|
||||
multivariate.dataset <- function(n = 100, p = 6, q = 4) {
|
||||
CVE <- getNamespace('CVE')
|
||||
|
||||
X <- matrix(rnorm(n * p), n, p)
|
||||
Delta <- diag(1, q, q)
|
||||
Delta[1, 2] <- Delta[2, 1] <- -0.5
|
||||
epsilon <- CVE$rmvnorm(n, sigma = Delta)
|
||||
B <- matrix(0, p, q)
|
||||
B[1, 1] <- 1
|
||||
B[2, 2] <- 2 / sqrt(5)
|
||||
B[3, 2] <- 1 / sqrt(5)
|
||||
|
||||
Y <- X %*% B + epsilon
|
||||
|
||||
list(X = X, Y = Y, B = B[, 1:2])
|
||||
}
|
||||
|
||||
|
||||
set.seed(42)
|
||||
sim.cve <- vector("list", 100)
|
||||
sim.tf1 <- vector("list", 100)
|
||||
sim.tf2 <- vector("list", 100)
|
||||
reps <- 10L
|
||||
sim.cve <- vector("list", reps)
|
||||
sim.tf1 <- vector("list", reps)
|
||||
sim.tf2 <- vector("list", reps)
|
||||
|
||||
start <- Sys.time()
|
||||
for (i in 1:100) {
|
||||
ds <- dataset(1)
|
||||
for (i in 1:reps) {
|
||||
# ds <- dataset(1)
|
||||
ds <- multivariate.dataset()
|
||||
|
||||
sim.cve[[i]] <- list(
|
||||
B.est = coef(CVE::cve.call(ds$X, ds$Y, k = ncol(ds$B)), ncol(ds$B)),
|
||||
B.true = ds$B
|
||||
)
|
||||
# sim.cve[[i]] <- list(
|
||||
# B.est = coef(CVE::cve.call(ds$X, ds$Y, k = ncol(ds$B)), ncol(ds$B)),
|
||||
# B.true = ds$B
|
||||
# )
|
||||
|
||||
sim.tf1[[i]] <- list(
|
||||
B.est = cve.tf(ds$X, ds$Y, ncol(ds$B))$B,
|
||||
B.est = cve.tf(ds$X, ds$Y, ncol(ds$B),
|
||||
optimizer_initialier = tf$optimizers$Adam)$B,
|
||||
B.true = ds$B
|
||||
)
|
||||
|
||||
sim.tf2[[i]] <- list(
|
||||
B.est = cve.tf(ds$X, ds$Y, ncol(ds$B), sd_noise = 0.05)$B,
|
||||
B.est = cve.tf(ds$X, ds$Y, ncol(ds$B),
|
||||
optimizer_initialier = tf$optimizers$Adam,
|
||||
method = "weighted")$B,
|
||||
B.true = ds$B
|
||||
)
|
||||
|
||||
cat(sprintf("\r%4d/100 -", i), format(Sys.time() - start), '\n')
|
||||
cat(sprintf("\r%4d/%d -", i, reps), format(Sys.time() - start), '\n')
|
||||
}
|
||||
|
||||
# pdf('subspace_comp.pdf')
|
||||
|
|
Loading…
Reference in New Issue