2019-09-16 09:15:51 +00:00
|
|
|
% Generated by roxygen2: do not edit by hand
|
|
|
|
% Please edit documentation in R/estimateBandwidth.R
|
|
|
|
\name{estimate.bandwidth}
|
|
|
|
\alias{estimate.bandwidth}
|
2019-10-18 07:06:36 +00:00
|
|
|
\title{Bandwidth estimation for CVE.}
|
2019-09-16 09:15:51 +00:00
|
|
|
\usage{
|
|
|
|
estimate.bandwidth(X, k, nObs)
|
|
|
|
}
|
|
|
|
\arguments{
|
2019-10-18 07:06:36 +00:00
|
|
|
\item{X}{data matrix with samples in its rows.}
|
2019-09-16 09:15:51 +00:00
|
|
|
|
2019-10-18 07:06:36 +00:00
|
|
|
\item{k}{Dimension of lower dimensional projection.}
|
2019-09-16 09:15:51 +00:00
|
|
|
|
2019-11-20 18:03:21 +00:00
|
|
|
\item{nObs}{number of points in a slice, see \eqn{nObs} in CVE paper.}
|
|
|
|
}
|
|
|
|
\value{
|
|
|
|
Estimated bandwidth \code{h}.
|
2019-09-16 09:15:51 +00:00
|
|
|
}
|
|
|
|
\description{
|
2019-11-20 18:03:21 +00:00
|
|
|
Estimates a bandwidth \code{h} according
|
2019-09-16 09:15:51 +00:00
|
|
|
\deqn{%
|
2019-11-20 18:03:21 +00:00
|
|
|
h = (2 * tr(\Sigma) / p) * (1.2 * n^{-1 / (4 + k)})^2}{%
|
2019-11-25 19:49:43 +00:00
|
|
|
h = (2 * tr(\Sigma) / p) * (1.2 * n^(\frac{-1}{4 + k}))^2}
|
2019-11-20 18:03:21 +00:00
|
|
|
with \eqn{n} the sample size, \eqn{p} its dimension
|
2019-10-18 07:06:36 +00:00
|
|
|
(\code{n <- nrow(X); p <- ncol(X)}) and the covariance-matrix \eqn{\Sigma}
|
2019-11-20 18:03:21 +00:00
|
|
|
which is \code{(n-1)/n} times the sample covariance estimate.
|
2019-09-16 09:15:51 +00:00
|
|
|
}
|