2019-08-30 19:16:52 +00:00
|
|
|
% Generated by roxygen2: do not edit by hand
|
|
|
|
% Please edit documentation in R/gradient.R
|
|
|
|
\name{grad}
|
|
|
|
\alias{grad}
|
|
|
|
\title{Compute get gradient of `L(V)` given a dataset `X`.}
|
|
|
|
\usage{
|
2019-09-02 13:22:35 +00:00
|
|
|
grad(X, Y, V, h, loss.out = FALSE, loss.log = FALSE,
|
|
|
|
loss.only = FALSE)
|
2019-08-30 19:16:52 +00:00
|
|
|
}
|
|
|
|
\arguments{
|
|
|
|
\item{X}{Data matrix.}
|
|
|
|
|
|
|
|
\item{Y}{Responce.}
|
|
|
|
|
|
|
|
\item{V}{Position to compute the gradient at, aka point on Stiefl manifold.}
|
|
|
|
|
|
|
|
\item{h}{Bandwidth}
|
|
|
|
|
|
|
|
\item{loss.only}{Boolean to only compute the loss, of \code{TRUE} a single
|
|
|
|
value loss is returned and \code{envir} is ignored.}
|
|
|
|
}
|
|
|
|
\description{
|
|
|
|
Compute get gradient of `L(V)` given a dataset `X`.
|
|
|
|
}
|
|
|
|
\keyword{internal}
|