2019-08-09 22:08:17 +00:00
|
|
|
//
|
|
|
|
// Standalone implementation for development.
|
2019-08-09 21:34:37 +00:00
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
// ~$ R -e "library(Rcpp); Rcpp::sourceCpp('cve_V2.cpp')"
|
|
|
|
//
|
|
|
|
|
|
|
|
// only `RcppArmadillo.h` which includes `Rcpp.h`
|
|
|
|
#include <RcppArmadillo.h>
|
|
|
|
|
|
|
|
// through the depends attribute `Rcpp` is tolled to create
|
|
|
|
// hooks for `RcppArmadillo` needed by the build process.
|
|
|
|
//
|
|
|
|
// [[Rcpp::depends(RcppArmadillo)]]
|
|
|
|
|
|
|
|
// required for `R::qchisq()` used in `estimateBandwidth()`
|
|
|
|
#include <Rmath.h>
|
|
|
|
|
|
|
|
//' Estimated bandwidth for CVE.
|
|
|
|
//'
|
|
|
|
//' Estimates a propper bandwidth \code{h} according
|
2019-08-09 22:08:17 +00:00
|
|
|
//' \deqn{h = \chi_{p-q}^{-1}\left(\frac{nObs - 1}{n-1}\right)\frac{2 tr(\Sigma)}{p}}{%
|
2019-08-09 21:34:37 +00:00
|
|
|
//' h = qchisq( (nObs - 1)/(n - 1), p - q ) 2 tr(Sigma) / p}
|
|
|
|
//'
|
|
|
|
//' @param X data matrix of dimension (n x p) with n data points X_i of dimension
|
|
|
|
//' q. Therefor each row represents a datapoint of dimension p.
|
|
|
|
//' @param k Guess for rank(B).
|
|
|
|
//' @param nObs Ether numeric of a function. If specified as numeric value
|
|
|
|
//' its used in the computation of the bandwidth directly. If its a function
|
|
|
|
//' `nObs` is evaluated as \code{nObs(nrow(x))}. The default behaviou if not
|
|
|
|
//' supplied at all is to use \code{nObs <- nrow(x)^0.5}.
|
|
|
|
//'
|
|
|
|
//' @seealso [qchisq()]
|
|
|
|
//'
|
|
|
|
//' @export
|
|
|
|
// [[Rcpp::export]]
|
|
|
|
double estimateBandwidth(const arma::mat& X, arma::uword k, double nObs) {
|
|
|
|
using namespace arma;
|
|
|
|
|
|
|
|
uword n = X.n_rows; // nr samples
|
|
|
|
uword p = X.n_cols; // dimension of rand. var. `X`
|
|
|
|
|
|
|
|
// column mean
|
|
|
|
mat M = mean(X);
|
|
|
|
// center `X`
|
|
|
|
mat C = X.each_row() - M;
|
|
|
|
// trace of covariance matrix, `traceSigma = Tr(C' C)`
|
|
|
|
double traceSigma = accu(C % C);
|
|
|
|
// compute estimated bandwidth
|
|
|
|
double qchi2 = R::qchisq((nObs - 1.0) / (n - 1), static_cast<double>(k), 1, 0);
|
|
|
|
|
|
|
|
return 2.0 * qchi2 * traceSigma / (p * n);
|
|
|
|
}
|
|
|
|
|
|
|
|
//' Random element from Stiefel Manifold `S(p, q)`.
|
|
|
|
//'
|
|
|
|
//' Draws an element of \eqn{S(p, q)} which is the Stiefel Manifold.
|
|
|
|
//' This is done by taking the Q-component of the QR decomposition
|
|
|
|
//' from a `(p, q)` Matrix with independent standart normal entries.
|
|
|
|
//' As a semi-orthogonal Matrix the result `V` satisfies \eqn{V'V = I_q}.
|
|
|
|
//'
|
|
|
|
//' @param p Row dimension
|
|
|
|
//' @param q Column dimension
|
|
|
|
//'
|
2019-08-09 22:08:17 +00:00
|
|
|
//' @return Matrix of dim `(p, q)`.
|
2019-08-09 21:34:37 +00:00
|
|
|
//'
|
|
|
|
//' @seealso <https://en.wikipedia.org/wiki/Stiefel_manifold>
|
|
|
|
//'
|
|
|
|
//' @export
|
|
|
|
// [[Rcpp::export]]
|
|
|
|
arma::mat rStiefel(arma::uword p, arma::uword q) {
|
|
|
|
arma::mat Q, R;
|
|
|
|
arma::qr_econ(Q, R, arma::randn<arma::mat>(p, q));
|
|
|
|
return Q;
|
|
|
|
}
|
|
|
|
|
|
|
|
double gradient(const arma::mat& X,
|
|
|
|
const arma::mat& X_diff,
|
|
|
|
const arma::mat& Y,
|
|
|
|
const arma::mat& Y_rep,
|
|
|
|
const arma::mat& V,
|
|
|
|
const double h,
|
|
|
|
arma::mat* G = 0
|
|
|
|
) {
|
|
|
|
using namespace arma;
|
|
|
|
|
|
|
|
uword n = X.n_rows;
|
|
|
|
uword p = X.n_cols;
|
|
|
|
|
|
|
|
// orthogonal projection matrix `Q = I - VV'` for dist computation
|
|
|
|
mat Q = -(V * V.t());
|
|
|
|
Q.diag() += 1;
|
|
|
|
// calc pairwise distances as `D` with `D(i, j) = d_i(V, X_j)`
|
|
|
|
vec D_vec = sum(square(X_diff * Q), 1);
|
|
|
|
mat D = reshape(D_vec, n, n);
|
|
|
|
// calc weights as `W` with `W(i, j) = w_i(V, X_j)`
|
|
|
|
mat W = exp(D / (-2.0 * h));
|
|
|
|
// column-wise normalization via 1-norm
|
|
|
|
W = normalise(W, 1);
|
|
|
|
vec W_vec = vectorise(W);
|
|
|
|
// weighted `Y` means (first and second order)
|
|
|
|
vec y1 = W.t() * Y;
|
|
|
|
vec y2 = W.t() * square(Y);
|
|
|
|
// loss for each `X_i`, meaning `L(i) = L_n(V, X_i)`
|
|
|
|
vec L = y2 - square(y1);
|
|
|
|
// `loss = L_n(V)`
|
|
|
|
double loss = mean(L);
|
|
|
|
// check if gradient as output variable is set
|
|
|
|
if (G != 0) {
|
|
|
|
// `G = grad(L_n(V))` a.k.a. gradient of `L` with respect to `V`
|
|
|
|
vec scale = (repelem(L, n, 1) - square(Y_rep - repelem(y1, n, 1))) % W_vec % D_vec;
|
|
|
|
mat X_diff_scale = X_diff.each_col() % scale;
|
|
|
|
(*G) = X_diff_scale.t() * X_diff * V;
|
|
|
|
(*G) *= -2.0 / (h * h * n);
|
|
|
|
}
|
|
|
|
|
|
|
|
return loss;
|
|
|
|
}
|
|
|
|
|
|
|
|
//' Stiefel Optimization with curvilinear linesearch.
|
|
|
|
//'
|
|
|
|
//' TODO: finish doc. comment
|
|
|
|
//' Stiefel Optimization for \code{V} given a dataset \code{X} and responces
|
|
|
|
//' \code{Y} for the model \deqn{Y\sim g(B'X) + \epsilon}{Y ~ g(B'X) + epsilon}
|
|
|
|
//' to compute the matrix `B` such that \eqn{span{B} = span(V)^{\bot}}{%
|
|
|
|
//' span(B) = orth(span(B))}.
|
|
|
|
//' The curvilinear linesearch uses Armijo-Wolfe conditions:
|
|
|
|
// \deqn{L(V(tau)) > L(V(0)) + rho_1 * tau * L(V(0))'}
|
|
|
|
//' \deqn{L(V(tau))' < rho_2 * L(V(0))'}
|
|
|
|
//'
|
|
|
|
//' @param X data points
|
|
|
|
//' @param Y response
|
|
|
|
//' @param k assumed \eqn{rank(B)}
|
|
|
|
//' @param nObs parameter for bandwidth estimation, typical value
|
|
|
|
//' \code{nObs = nrow(X)^lambda} with \code{lambda} in the range [0.3, 0.8].
|
|
|
|
//' @param tau Initial step size
|
|
|
|
//' @param tol Tolerance for update error used for stopping criterion
|
|
|
|
//' @param maxIter Upper bound of optimization iterations
|
|
|
|
//'
|
|
|
|
//' @return List containing the bandwidth \code{h}, optimization objective \code{V}
|
|
|
|
//' and the matrix \code{B} estimated for the model as a orthogonal basis of the
|
|
|
|
//' orthogonal space spaned by \code{V}.
|
|
|
|
//'
|
|
|
|
//' @rdname optStiefel
|
2019-08-09 22:08:17 +00:00
|
|
|
//' @keywords internal
|
2019-08-09 21:34:37 +00:00
|
|
|
double optStiefel(
|
|
|
|
const arma::mat& X,
|
|
|
|
const arma::vec& Y,
|
|
|
|
const int k,
|
|
|
|
const double h,
|
|
|
|
const double tauInitial,
|
|
|
|
const double rho1,
|
|
|
|
const double rho2,
|
|
|
|
const double tol,
|
|
|
|
const int maxIter,
|
|
|
|
const int maxLineSeachIter,
|
|
|
|
arma::mat& V, // out
|
|
|
|
arma::vec& history // out
|
|
|
|
) {
|
|
|
|
using namespace arma;
|
|
|
|
|
|
|
|
// get dimensions
|
|
|
|
const uword n = X.n_rows; // nr samples
|
|
|
|
const uword p = X.n_cols; // dim of random variable `X`
|
|
|
|
const uword q = p - k; // rank(V) e.g. dim of ortho space of span{B}
|
|
|
|
|
|
|
|
// all `X_i - X_j` differences, `X_diff.row(i * n + j) = X_i - X_j`
|
|
|
|
mat X_diff(n * n, p);
|
|
|
|
for (uword i = 0, k = 0; i < n; ++i) {
|
|
|
|
for (uword j = 0; j < n; ++j) {
|
|
|
|
X_diff.row(k++) = X.row(i) - X.row(j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const vec Y_rep = repmat(Y, n, 1);
|
|
|
|
const mat I_p = eye<mat>(p, p);
|
|
|
|
const mat I_2q = eye<mat>(2 * q, 2 * q);
|
|
|
|
|
|
|
|
// initial start value for `V`
|
|
|
|
V = rStiefel(p, q);
|
|
|
|
|
|
|
|
// first gradient initialization
|
|
|
|
mat G;
|
|
|
|
double loss = gradient(X, X_diff, Y, Y_rep, V, h, &G);
|
|
|
|
|
|
|
|
// set first `loss` in history
|
|
|
|
history(0) = loss;
|
|
|
|
|
|
|
|
// main curvilinear optimization loop
|
|
|
|
double error = datum::inf;
|
|
|
|
int iter = 0;
|
|
|
|
while (iter++ < maxIter && error > tol) {
|
|
|
|
// helper matrices `lU` (linesearch U), `lV` (linesearch V)
|
|
|
|
// as describet in [Wen, Yin] Lemma 4.
|
|
|
|
mat lU = join_rows(G, V); // linesearch "U"
|
|
|
|
mat lV = join_rows(V, -1.0 * G); // linesearch "V"
|
|
|
|
// `A = G V' - V G'`
|
|
|
|
mat A = lU * lV.t();
|
|
|
|
|
|
|
|
// set initial step size for curvilinear line search
|
|
|
|
double tau = tauInitial, lower = 0., upper = datum::inf;
|
|
|
|
|
|
|
|
// check if `tau` is valid for inverting
|
|
|
|
|
|
|
|
// set line search internal gradient and loss to cycle for next iteration
|
|
|
|
mat V_tau; // next position after a step of size `tau`, a.k.a. `V(tau)`
|
|
|
|
mat G_tau; // gradient of `V` at `V(tau) = V_tau`
|
|
|
|
double loss_tau; // loss (objective) at position `V(tau)`
|
|
|
|
int lsIter = 0; // linesearch iter
|
|
|
|
// start line search
|
|
|
|
do {
|
|
|
|
mat HV = inv(I_2q + (tau/2.) * lV.t() * lU) * lV.t();
|
|
|
|
// next step `V`
|
|
|
|
V_tau = V - tau * (lU * (HV * V));
|
|
|
|
|
|
|
|
double LprimeV = -trace(G.t() * A * V);
|
|
|
|
|
|
|
|
mat lB = I_p - (tau / 2.) * lU * HV;
|
|
|
|
|
|
|
|
loss_tau = gradient(X, X_diff, Y, Y_rep, V_tau, h, &G_tau);
|
|
|
|
|
|
|
|
double LprimeV_tau = -2. * trace(G_tau.t() * lB * A * (V + V_tau));
|
|
|
|
|
|
|
|
// Armijo condition
|
|
|
|
if (loss_tau > loss + (rho1 * tau * LprimeV)) {
|
|
|
|
upper = tau;
|
|
|
|
tau = (lower + upper) / 2.;
|
|
|
|
// Wolfe condition
|
|
|
|
} else if (LprimeV_tau < rho2 * LprimeV) {
|
|
|
|
lower = tau;
|
|
|
|
if (upper == datum::inf) {
|
|
|
|
tau = 2. * lower;
|
|
|
|
} else {
|
|
|
|
tau = (lower + upper) / 2.;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} while (++lsIter < maxLineSeachIter);
|
|
|
|
|
|
|
|
// compute error (break condition)
|
|
|
|
// Note: `error` is the decrease of the objective `L_n(V)` and not the
|
|
|
|
// norm of the gradient as proposed in [Wen, Yin] Algorithm 1.
|
|
|
|
error = loss - loss_tau;
|
|
|
|
|
|
|
|
// cycle `V`, `G` and `loss` for next iteration
|
|
|
|
V = V_tau;
|
|
|
|
loss = loss_tau;
|
|
|
|
G = G_tau;
|
|
|
|
|
|
|
|
// store final `loss`
|
|
|
|
history(iter) = loss;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return loss;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//' Conditional Variance Estimation (CVE) method.
|
|
|
|
//'
|
|
|
|
//' This version uses a curvilinear linesearch for the stiefel optimization.
|
|
|
|
//'
|
|
|
|
//' @param X data points
|
|
|
|
//' @param Y response
|
|
|
|
//' @param k assumed \eqn{rank(B)}
|
|
|
|
//' @param nObs parameter for bandwidth estimation, typical value
|
|
|
|
//' \code{nObs = nrow(X)^lambda} with \code{lambda} in the range [0.3, 0.8].
|
|
|
|
//' @param tau Initial step size (default 1)
|
|
|
|
//' @param tol Tolerance for update error used for stopping criterion (default 1e-5)
|
|
|
|
//' @param slack Ratio of small negative error allowed in loss optimization (default -1e-10)
|
|
|
|
//' @param maxIter Upper bound of optimization iterations (default 50)
|
|
|
|
//' @param attempts Number of tryes with new random optimization starting points (default 10)
|
|
|
|
//'
|
|
|
|
//' @return List containing the bandwidth \code{h}, optimization objective \code{V}
|
|
|
|
//' and the matrix \code{B} estimated for the model as a orthogonal basis of the
|
|
|
|
//' orthogonal space spaned by \code{V}.
|
|
|
|
//'
|
|
|
|
//' @rdname cve_cpp_V2
|
|
|
|
//' @export
|
|
|
|
// [[Rcpp::export]]
|
|
|
|
Rcpp::List cve_cpp(
|
|
|
|
const arma::mat& X,
|
|
|
|
const arma::vec& Y,
|
|
|
|
const int k,
|
|
|
|
const double nObs,
|
|
|
|
const double tauInitial = 1.,
|
|
|
|
const double rho1 = 0.05,
|
|
|
|
const double rho2 = 0.95,
|
|
|
|
const double tol = 1e-6,
|
|
|
|
const int maxIter = 50,
|
|
|
|
const int maxLineSeachIter = 10,
|
|
|
|
const int attempts = 10
|
|
|
|
) {
|
|
|
|
using namespace arma;
|
|
|
|
|
|
|
|
// tracker of current best results
|
|
|
|
mat V_best;
|
|
|
|
double loss_best = datum::inf;
|
|
|
|
// estimate bandwidth
|
|
|
|
double h = estimateBandwidth(X, k, nObs);
|
|
|
|
|
|
|
|
// loss history for each optimization attempt
|
|
|
|
// each column contaions the iteration history for the loss
|
|
|
|
mat history = mat(maxIter + 1, attempts);
|
|
|
|
|
|
|
|
// multiple stiefel optimization attempts
|
|
|
|
for (int i = 0; i < attempts; ++i) {
|
|
|
|
// declare output variables
|
|
|
|
mat V; // estimated `V` space
|
|
|
|
vec hist = vec(history.n_rows, fill::zeros); // optimization history
|
|
|
|
double loss = optStiefel(X, Y, k, h,
|
|
|
|
tauInitial, rho1, rho2, tol, maxIter, maxLineSeachIter, V, hist
|
|
|
|
);
|
|
|
|
if (loss < loss_best) {
|
|
|
|
loss_best = loss;
|
|
|
|
V_best = V;
|
|
|
|
}
|
|
|
|
// write history to history collection
|
|
|
|
history.col(i) = hist;
|
|
|
|
}
|
|
|
|
|
|
|
|
// get `B` as kernal of `V.t()`
|
|
|
|
mat B = null(V_best.t());
|
|
|
|
|
|
|
|
return Rcpp::List::create(
|
|
|
|
Rcpp::Named("history") = history,
|
|
|
|
Rcpp::Named("loss") = loss_best,
|
|
|
|
Rcpp::Named("h") = h,
|
|
|
|
Rcpp::Named("V") = V_best,
|
|
|
|
Rcpp::Named("B") = B
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*** R
|
|
|
|
|
|
|
|
source("CVE/R/datasets.R")
|
|
|
|
ds <- dataset()
|
|
|
|
|
|
|
|
print(system.time(
|
|
|
|
cve.res <- cve_cpp(
|
|
|
|
X = ds$X,
|
|
|
|
Y = ds$Y,
|
|
|
|
k = ncol(ds$B),
|
|
|
|
nObs = sqrt(nrow(ds$X))
|
|
|
|
)
|
|
|
|
))
|
|
|
|
|
|
|
|
pdf('plots/cve_V2_history.pdf')
|
|
|
|
H <- cve.res$history
|
|
|
|
H_i <- H[H[, 1] > 0, 1]
|
|
|
|
plot(1:length(H_i), H_i,
|
|
|
|
main = "History cve_V2",
|
|
|
|
xlab = "Iterations i",
|
|
|
|
ylab = expression(loss == L[n](V^{(i)})),
|
|
|
|
xlim = c(1, nrow(H)),
|
|
|
|
ylim = c(0, max(H)),
|
|
|
|
type = "l"
|
|
|
|
)
|
|
|
|
for (i in 2:ncol(H)) {
|
|
|
|
H_i <- H[H[, i] > 0, i]
|
|
|
|
lines(1:length(H_i), H_i)
|
|
|
|
}
|
|
|
|
x.ends <- apply(H, 2, function(h) { length(h[h > 0]) })
|
|
|
|
y.ends <- apply(H, 2, function(h) { min(h[h > 0]) })
|
|
|
|
points(x.ends, y.ends)
|
|
|
|
|
|
|
|
*/
|