170 lines
5.9 KiB
R
170 lines
5.9 KiB
R
#' Gradient Descent Bases Tensor Predictors method
|
|
#'
|
|
#' @export
|
|
kpir.new <- function(X, Fy, shape = c(dim(X)[-1], dim(Fy[-1])),
|
|
max.iter = 500L, max.line.iter = 50L, step.size = 1e-3,
|
|
max.init.iter = 20L, init.method = c("ls", "vlp"),
|
|
eps = .Machine$double.eps,
|
|
logger = NULL
|
|
) {
|
|
|
|
# Check if X and Fy have same number of observations
|
|
stopifnot(nrow(X) == NROW(Fy))
|
|
n <- nrow(X) # Number of observations
|
|
|
|
# Get and check predictor dimensions
|
|
if (length(dim(X)) == 2L) {
|
|
stopifnot(!missing(shape))
|
|
stopifnot(ncol(X) == prod(shape[1:2]))
|
|
p <- as.integer(shape[1]) # Predictor "height"
|
|
q <- as.integer(shape[2]) # Predictor "width"
|
|
} else if (length(dim(X)) == 3L) {
|
|
p <- dim(X)[2]
|
|
q <- dim(X)[3]
|
|
dim(X) <- c(n, p * q)
|
|
} else {
|
|
stop("'X' must be a matrix or 3-tensor")
|
|
}
|
|
|
|
# Get and check response dimensions
|
|
if (!is.array(Fy)) {
|
|
Fy <- as.array(Fy)
|
|
}
|
|
if (length(dim(Fy)) == 1L) {
|
|
k <- r <- 1L
|
|
dim(Fy) <- c(n, 1L)
|
|
} else if (length(dim(Fy)) == 2L) {
|
|
stopifnot(!missing(shape))
|
|
stopifnot(ncol(Fy) == prod(shape[3:4]))
|
|
k <- as.integer(shape[3]) # Response functional "height"
|
|
r <- as.integer(shape[4]) # Response functional "width"
|
|
} else if (length(dim(Fy)) == 3L) {
|
|
k <- dim(Fy)[2]
|
|
r <- dim(Fy)[3]
|
|
dim(Fy) <- c(n, k * r)
|
|
} else {
|
|
stop("'Fy' must be a vector, matrix or 3-tensor")
|
|
}
|
|
|
|
### Step 1: (Approx) Least Squares initial estimate
|
|
init.method <- match.arg(init.method)
|
|
if (init.method == "ls") {
|
|
dim(X) <- c(n, p, q)
|
|
dim(Fy) <- c(n, k, r)
|
|
ls <- kpir.ls(X, Fy, max.iter = max.init.iter, sample.axis = 1L, eps = eps)
|
|
c(beta, alpha) %<-% ls$alphas
|
|
dim(X) <- c(n, p * q)
|
|
dim(Fy) <- c(n, k * r)
|
|
} else { # Van Loan and Pitsianis
|
|
# solution for `X = Fy B' + epsilon`
|
|
cpFy <- crossprod(Fy) # TODO: Check/Test and/or replace
|
|
if (n <= k * r || qr(cpFy)$rank < k * r) {
|
|
# In case of under-determined system replace the inverse in the normal
|
|
# equation by the Moore-Penrose Pseudo Inverse
|
|
B <- t(matpow(cpFy, -1) %*% crossprod(Fy, X))
|
|
} else {
|
|
# Compute OLS estimate by the Normal Equation
|
|
B <- t(solve(cpFy, crossprod(Fy, X)))
|
|
}
|
|
|
|
# Decompose `B = alpha x beta` into `alpha` and `beta`
|
|
c(alpha, beta) %<-% approx.kronecker(B, c(q, r), c(p, k))
|
|
}
|
|
|
|
# Compute residuals
|
|
resid <- X - tcrossprod(Fy, kronecker(alpha, beta))
|
|
|
|
# Covariance estimate
|
|
Delta <- crossprod(resid) / n
|
|
|
|
# Transformed Residuals (using `matpow` as robust inversion algo,
|
|
# uses Moore-Penrose Pseudo Inverse in case of singular `Delta`)
|
|
resid.trans <- resid %*% matpow(Delta, -1)
|
|
|
|
# Evaluate negative log-likelihood
|
|
loss <- 0.5 * (n * log(det(Delta)) + sum(resid.trans * resid))
|
|
|
|
# Call history callback (logger) before the first iterate
|
|
if (is.function(logger)) {
|
|
logger(0L, loss, alpha, beta, Delta, NA)
|
|
}
|
|
|
|
|
|
### Step 2: MLE with LS solution as starting value
|
|
for (iter in seq_len(max.iter)) {
|
|
# Sum over kronecker prod by observation (Face-Splitting Product)
|
|
KR <- colSums(rowKronecker(Fy, resid.trans))
|
|
dim(KR) <- c(p, q, k, r)
|
|
|
|
# `alpha` Gradient
|
|
R.Alpha <- aperm(KR, c(2, 4, 1, 3))
|
|
dim(R.Alpha) <- c(q * r, p * k)
|
|
grad.alpha <- c(R.Alpha %*% c(beta))
|
|
|
|
# `beta` Gradient
|
|
R.Beta <- aperm(KR, c(1, 3, 2, 4))
|
|
dim(R.Beta) <- c(p * k, q * r)
|
|
grad.beta <- c(R.Beta %*% c(alpha))
|
|
|
|
# Line Search (Armijo type)
|
|
# The `inner.prod` is used in the Armijo break condition but does not
|
|
# depend on the step size.
|
|
inner.prod <- sum(grad.alpha^2) + sum(grad.beta^2)
|
|
|
|
# Line Search loop
|
|
for (delta in step.size * 0.618034^seq.int(0L, length.out = max.line.iter)) {
|
|
# Update `alpha` and `beta` (note: add(+), the gradients are already
|
|
# pointing into the negative slope direction of the loss cause they are
|
|
# the gradients of the log-likelihood [NOT the negative log-likelihood])
|
|
alpha.temp <- alpha + delta * grad.alpha
|
|
beta.temp <- beta + delta * grad.beta
|
|
|
|
# Update Residuals, Covariance and transformed Residuals
|
|
resid <- X - tcrossprod(Fy, kronecker(alpha.temp, beta.temp))
|
|
Delta <- crossprod(resid) / n
|
|
resid.trans <- resid %*% matpow(Delta, -1)
|
|
|
|
# Evaluate negative log-likelihood
|
|
loss.temp <- 0.5 * (n * log(det(Delta)) + sum(resid.trans * resid))
|
|
|
|
# Armijo line search break condition
|
|
if (loss.temp <= loss - 0.1 * delta * inner.prod) {
|
|
break
|
|
}
|
|
}
|
|
|
|
# Call logger (invoce history callback)
|
|
if (is.function(logger)) {
|
|
logger(iter, loss.temp, alpha.temp, beta.temp, Delta, delta)
|
|
}
|
|
|
|
# Ensure descent
|
|
if (loss.temp < loss) {
|
|
alpha <- alpha.temp
|
|
beta <- beta.temp
|
|
|
|
# check break conditions (in descent case)
|
|
if (mean(abs(alpha)) + mean(abs(beta)) < eps) {
|
|
break # basically, estimates are zero -> stop
|
|
}
|
|
if (inner.prod < eps * (p * q + r * k)) {
|
|
break # mean squared gradient is smaller than epsilon -> stop
|
|
}
|
|
if (abs(loss.temp - loss) < eps) {
|
|
break # decrease is too small (slow) -> stop
|
|
}
|
|
|
|
loss <- loss.temp
|
|
} else {
|
|
break
|
|
}
|
|
|
|
# Set next iter starting step.size to line searched step size
|
|
# (while allowing it to encrease)
|
|
step.size <- 1.618034 * delta
|
|
|
|
}
|
|
|
|
list(loss = loss, alpha = alpha, beta = beta, Delta = Delta)
|
|
}
|