tensor_predictors/tensorPredictors/R/kpir_mle.R

103 lines
3.7 KiB
R

#' Per mode (axis) MLE
#'
#' @param sample.axis index of the sample mode, a.k.a. observation axis index
#'
#' @export
kpir.mle <- function(X, Fy, sample.axis = 1L, center = TRUE,
max.iter = 50L, max.init.iter = 10L, eps = sqrt(.Machine$double.eps),
logger = NULL
) {
### Step 0: Setup/Initialization
if (!is.array(Fy)) {
# scalar response case (add new axis of size 1)
dim(Fy) <- ifelse(seq_along(dim(X)) == sample.axis, dim(X)[sample.axis], 1L)
}
# Check dimensions and matching of axis (tensor order)
stopifnot(exprs = {
length(dim(X)) == length(dim(Fy))
dim(X)[sample.axis] == dim(Fy)[sample.axis]
})
# warn about occurence of an axis without reduction
if (any(dim(Fy)[-sample.axis] >= dim(X)[-sample.axis])) {
warning("Degenerate case 'any(dim(Fy)[-sample.axis] >= dim(X)[-sample.axis])'")
}
# extract dimensions (for easier handling as local variables)
modes <- seq_along(dim(X))[-sample.axis] # predictor axis indices
n <- dim(X)[sample.axis] # observation count (scalar)
p <- dim(X)[-sample.axis] # predictor dimensions (vector)
r <- length(dim(X)) - 1L # predictor rank (tensor order)
if (center) {
# Means for X and Fy (a.k.a. sum elements over the sample axis)
meanX <- apply(X, modes, mean, simplify = TRUE)
meanFy <- apply(Fy, modes, mean, simplify = TRUE)
# Center both X and Fy
X <- sweep(X, modes, meanX)
Fy <- sweep(Fy, modes, meanFy)
} else {
meanX <- meanFy <- NA
}
### Step 1: Initial values
ls.fit <- kpir.ls(X, Fy, sample.axis = sample.axis, center = FALSE,
max.iter = max.init.iter, eps = eps, logger = logger)
alphas <- ls.fit$alphas
Deltas <- ls.fit$Deltas
# compute residuals
R <- X - mlm(Fy, alphas, modes)
# Compute covariance inverses
Delta.invs <- Map(solve, Deltas)
# multiply Deltas with alphas
Delta.inv.alphas <- Map(`%*%`, Delta.invs, alphas)
### Step 2: Iterative Updating
for (iter in seq_len(max.iter)) {
# Invoke logger for previous iterate
if (is.function(logger)) {
logger("mle", iter - 1L, alphas, Deltas)
}
# random order cyclic updating
for (j in sample(2 * r)) {
# toggle between updating alpha j <= r and Delta j > r
if (j <= r) {
# Update `alpha_j`
XxDi <- mlm(X, Delta.invs[-j], modes[-j])
Fxa <- mlm(Fy, alphas[-j], modes[-j])
FxDia <- mlm(Fy, Delta.inv.alphas[-j], modes[-j])
alphas[[j]] <- mcrossprod(XxDi, Fxa, modes[j]) %*%
solve(mcrossprod(FxDia, Fxa, modes[j]))
# Recompute Residuals (with updated alpha)
R <- X - mlm(Fy, alphas, modes)
} else {
j <- j - r # map from [r + 1; 2 r] to [1; r]
# Update `Delta_j`
Deltas[[j]] <- (p[j] / (n * prod(p))) *
mcrossprod(mlm(R, Delta.invs[-j], modes[-j]), R, modes[j])
# Recompute `Delta_j^-1`
Delta.invs[[j]] <- solve(Deltas[[j]])
# as well as `Delta_j^-1 alpha_j`
Delta.inv.alphas[[j]] <- Delta.invs[[j]] %*% alphas[[j]]
}
}
# TODO: add some kind of break condition
}
# Before returning, call logger for the final iteration
if (is.function(logger)) {
logger("mle", iter, alphas, Deltas)
}
list(alphas = structure(alphas, names = as.character(modes)),
Deltas = structure(Deltas, names = as.character(modes)),
meanX = meanX, meanFy = meanFy)
}