tensor_predictors/tensorPredictors/R/CISE.R

181 lines
6.7 KiB
R

#' Coordinate-Independent Sparce Estimation.
#'
#' Solves penalized version of a GEP (Generalized Eigenvalue Problem)
#' \deqn{M V = N \Lambda V}
#' with \eqn{\Lambda} a matrix with eigenvalues on the main diagonal and \eqn{V}
#' are the first \eqn{d} eigenvectors.
#'
#' TODO: DOES NOT WORK, DON'T KNOW WHY (contact first author for the Matlab code)
#'
#' @param M is the GEP's left hand side
#' @param N is the GEP's right hand side
#' @param d number of leading eigenvalues, -vectors to be computed
#' @param max.iter maximum number of iterations for iterative optimization
#' @param Theta Penalty parameter, if not provided an reasonable estimate for
#' a grid of parameters is computed. If Theta is a vector (or number), the
#' provided values of Theta are used as penalty parameter candidates.
#' @param tol.norm numerical tolerance for dropping rows
#' @param tol.break break condition tolerance
#'
#' @returns a list
#'
#' @examples \dontrun{
#' # Study 1-4 from CISE paper
#' dataset <- function(name, n = 60, p = 24) {
#' name <- toupper(name)
#' if (!startsWith('M', name)) { name <- paste0('M', name) }
#'
#' if (name %in% c('M1', 'M2', 'M3')) {
#' Sigma <- 0.5^abs(outer(1:p, 1:p, `-`))
#' X <- rmvnorm(n, sigma = Sigma)
#' y <- switch(name,
#' M1 = rowSums(X[, 1:3]) + rnorm(n, 0, 0.5),
#' M2 = rowSums(X[, 1:3]) + rnorm(n, 0, 2),
#' M3 = X[, 1] / (0.5 + (X[, 2] + 1.5)^2) + rnorm(n, 0, 0.2)
#' )
#' B <- switch(name,
#' M1 = as.matrix(as.double(1:p < 4)),
#' M2 = as.matrix(as.double(1:p < 4)),
#' M3 = diag(1, p, 2)
#' )
#' } else if (name == 'M4') {
#' y <- rnorm(n)
#' Delta <- 0.5^abs(outer(1:p, 1:p, `-`))
#' Gamma <- 0.5 * cbind(
#' (1:p <= 4),
#' (-(1:p <= 4))^(1:p + 1)
#' )
#' B <- qr.Q(qr(solve(Delta, Gamma)))
#' X <- cbind(y, y^2) %*% t(Gamma) +
#' matpow(Delta, 0.5) %*% rmvnorm(n, rep(0, p))
#' } else {
#' stop('Unknown dataset name.')
#' }
#'
#' list(X = X, y = y, B = B)
#' }
#' # Sample dataset
#' n <- 1000
#' ds <- dataset(3, n = n)
#' # Convert to PFC associated GEP
#' Fy <- with(ds, cbind(abs(y), y, y^2))
#' P.Fy <- Fy %*% solve(crossprod(Fy), t(Fy))
#' M <- with(ds, crossprod(X, P.Fy %*% X) / nrow(X)) # Sigma Fit
#' N <- cov(ds$X) # Sigma
#'
#' fits <- CISE(M, N, d = ncol(ds$B), Theta = log(seq(1, exp(1e-3), len = 1000)))
#'
#' BIC <- unlist(Map(attr, fits, 'BIC'))
#' df <- unlist(Map(attr, fits, 'df'))
#' dist <- unlist(Map(attr, fits, 'dist'))
#' iter <- unlist(Map(attr, fits, 'iter'))
#' theta <- unlist(Map(attr, fits, 'theta'))
#' p.theta <- unlist(Map(function(V) sum(rowSums(V^2) > 1e-9), fits))
#'
#' par(mfrow = c(2, 2))
#' plot(theta, BIC, type = 'l')
#' plot(theta, p.theta, type = 'l')
#' plot(theta, dist, type = 'l')
#' plot(theta, iter, type = 'l')
#' }
#'
#' @seealso "Coordinate-Independent Sparse Sufficient Dimension
#' Reduction and Variable Selection" By Xin Chen, Changliang Zou and
#' R. Dennis Cook.
#'
#' @note for speed reasons this functions attempts to use
#' \code{\link[RSpectra]{eigs_sym}} if \pkg{\link{RSpectra}} is installed,
#' otherwise \code{\link{eigen}} is used which might be significantly slower.
#'
#' @export
CISE <- function(M, N, d = 1L, method = "PFC", max.iter = 100L, Theta = NULL,
tol.norm = 1e-6, tol.break = 1e-6, r = 0.5
) {
isrN <- matpow(N, -0.5) # N^-1/2 ... Inverse Square-Root of N
G <- isrN %*% M %*% isrN # G = N^-1/2 M N^-1/2
# Step 1: Solve (ordinary, unconstraint) eigenvalue problem used as an
# initial value for following iterative optimization (Solution of (2.8))
Gamma <- if (requireNamespace("RSpectra", quietly = TRUE)) {
RSpectra::eigs_sym(G, d)$vectors
} else {
eigen(G, symmetric = TRUE)$vectors[, d, drop = FALSE]
}
V.init <- isrN %*% Gamma
# Build penalty grid
if (missing(Theta)) {
# TODO: figure out what a good min to max in steps grid is
theta.max <- sqrt(max(rowSums(Gamma^2)))
Theta <- seq(0.01 * theta.max, 0.75 * theta.max, length.out = 10)
}
norms <- sqrt(rowSums(V.init^2)) # row norms of V
theta.scale <- 0.5 * ifelse(norms < tol.norm, 0, norms^(-r))
# For each penalty candidate
fits <- lapply(Theta, function(theta) {
# Step 2: Iteratively optimize constraint GEP
V <- V.init
dropped <- rep(FALSE, nrow(M)) # Keep track of dropped variables
for (iter in seq_len(max.iter)) {
# Compute current row norms
norms <- sqrt(rowSums(V^2)) # row norms of V
# Check if variables are dropped. If so, update dropped and
# recompute the inverse square root of N
if (any(norms < tol.norm)) {
dropped[!dropped] <- norms < tol.norm
norms <- norms[!(norms < tol.norm)]
isrN <- matpow(N[!dropped, !dropped], -0.5)
}
# Approx. penalty term derivative at current position
h <- theta * (theta.scale[!dropped] / norms)
# Updated G at current position (scaling by 1/2 done in `theta.scale`)
A <- G[!dropped, !dropped] - (isrN %*% (h * isrN))
# Solve next iteration GEP
Gamma <- if (requireNamespace("RSpectra", quietly = TRUE)) {
RSpectra::eigs_sym(A, d)$vectors
} else {
eigen(A, symmetric = TRUE)$vectors[, d, drop = FALSE]
}
V.last <- V
V <- isrN %*% Gamma
# Check if there are enough variables left
if (nrow(V) < d + 1) {
break
}
# Break dondition (only when nothing dropped)
if (nrow(V.last) == nrow(V)
&& dist.subspace(V.last, V, normalize = TRUE) < tol.break) {
break
}
}
# Recreate dropped variables and fill parameters with 0.
V.full <- matrix(0, nrow(M), d)
V.full[!dropped, ] <- V
# df <- (sum(!dropped) - d) * d
# BIC <- -sum(V * (M %*% V)) + log(n) * df / n
# cat("theta:", sprintf('%7.3f', range(theta)),
# "- iter:", sprintf('%3d', iter),
# "- df:", sprintf('%3d', df),
# "- BIC:", sprintf('%7.3f', BIC),
# "- dist:", sprintf('%7.3f', dist.subspace(V.last, V, normalize = TRUE)),
# # "- ", paste(sprintf('%6.2f', norms), collapse = ", "),
# '\n')
structure(qr.Q(qr(V.full)),
theta = theta, iter = iter, BIC = BIC, df = df,
dist = dist.subspace(V.last, V, normalize = TRUE))
})
structure(fits,
call = match.call(),
class = c("tensorPredictors", "CISE"))
}