tensor_predictors/LaTeX/images/reduction.tex

37 lines
1.5 KiB
TeX

\begin{tikzpicture}[scale = \tikzscale], line width = 1pt]
\def\rect#1#2#3{
\draw (0, 0, 0) -- (#1, 0, 0) -- (#1, #2, 0) -- (0, #2, 0) -- cycle;
\draw[ ] (#1, 0, -#3) -- (#1, #2, -#3) -- (0, #2, -#3);
\draw[dashed] (#1, 0, -#3) -- (0, 0, -#3) -- (0, #2, -#3);
\draw[dashed] (0, 0, 0) -- (0, 0, -#3);
\draw[ ] (0, #2, 0) -- (0, #2, -#3);
\draw[ ] (#1, 0, 0) -- (#1, 0, -#3);
\draw[ ] (#1, #2, 0) -- (#1, #2, -#3);
}
\begin{scope}[yshift = 1cm, line width = 1pt]
\rect{1.5}{1}{2}
\node[font = \boldmath] at (1, 0.5) {$\ten{R}(\ten{X})$};
\end{scope}
\rect{3}{2}{4}
\node at (2, 0.5) {$\ten{X} - \E\ten{X}$};
\draw[lightgray, line width = 0.7pt] (-2.1, 2) arc (180:270:2);
\draw[fill = lightgray, fill opacity = 0.7] (-2.1, 1) rectangle +(2, 1)
node [pos = 0.5] {$\t{\mat{\beta}_1}$};
\draw[lightgray, line width = 0.7pt, domain = 0:1, smooth, variable = \t]
plot ({0}, {2.1 + 4 * cos(90 * \t)}, {-4 * sin(90 * \t)});
\draw[fill = lightgray, fill opacity = 0.7]
(0, 2.1, 0) -- (0, 2.1, -2) -- (0, 6.1, -2) -- (0, 6.1, 0) -- cycle;
\node[opacity = 0.7, cm={0.66, 0.66, 0, 1, (0, 0)}]
at (0, 4.1, -1.1) {$\t{\mat{\beta}_3}$};
\draw[lightgray, line width = 0.7pt] (0, 5.1) arc (90:0:3);
\draw[fill = lightgray, fill opacity = 0.7] (0, 2.1) rectangle +(1.5, 3)
node [pos = 0.5] {$\t{\mat{\beta}_2}$};
\end{tikzpicture}