97 lines
3.6 KiB
R
97 lines
3.6 KiB
R
library(tensorPredictors)
|
|
|
|
set.seed(271828183, "Mersenne-Twister", "Inversion", "Rejection")
|
|
|
|
### simulation configuration
|
|
reps <- 100 # number of simulation replications
|
|
n <- 100 # sample sizes `n`
|
|
N <- 2000 # validation set size
|
|
p <- c(2, 3, 5) # preditor dimensions
|
|
q <- c(1, 2, 3) # functions of y dimensions (response dimensions)
|
|
|
|
# initial consistency checks
|
|
stopifnot(exprs = {
|
|
length(p) == length(q)
|
|
})
|
|
|
|
# setup model parameters
|
|
alphas <- Map(matrix, Map(rnorm, p * q), p) # reduction matrices
|
|
Omegas <- Map(function(pj) 0.5^abs(outer(1:pj, 1:pj, `-`)), p) # mode scatter
|
|
eta1 <- 0 # intercept
|
|
|
|
# data sampling routine
|
|
sample.data <- function(n, eta1, alphas, Omegas, sample.axis = length(alphas) + 1L) {
|
|
r <- length(alphas) # tensor order
|
|
|
|
# generate response (sample axis is last axis)
|
|
y <- sample.int(prod(q), n, replace = TRUE) # uniform samples
|
|
Fy <- array(outer(seq_len(prod(q)), y, `==`), dim = c(q, n))
|
|
Fy <- Fy - c(rowMeans(Fy, dims = r))
|
|
|
|
# sample predictors as X | Y = y (sample axis is last axis)
|
|
Deltas <- Map(solve, Omegas) # normal covariances
|
|
mu_y <- mlm(mlm(Fy, alphas) + c(eta1), Deltas) # conditional mean
|
|
X <- mu_y + rtensornorm(n, 0, Deltas, r + 1L) # responses X
|
|
|
|
# permute axis to requested get the sample axis
|
|
if (sample.axis != r + 1L) {
|
|
perm <- integer(r + 1L)
|
|
perm[sample.axis] <- r + 1L
|
|
perm[-sample.axis] <- seq_len(r)
|
|
X <- aperm(X, perm)
|
|
Fy <- aperm(Fy, perm)
|
|
}
|
|
|
|
list(X = X, Fy = Fy, y = y, sample.axis = sample.axis)
|
|
}
|
|
|
|
### sample (training) data
|
|
c(X, Fy, y = y, sample.axis) %<-% sample.data(n, eta1, alphas, Omegas)
|
|
|
|
### Fit data using GMLM with logging
|
|
|
|
# logger to log iterative change in the estimation process of GMLM
|
|
# log <- data.frame()
|
|
log.likelihood <- tensorPredictors:::make.gmlm.family("normal")$log.likelihood
|
|
B.true <- Reduce(`%x%`, rev(alphas))
|
|
logger <- function(iter, eta1.est, alphas.est, Omegas.est) {
|
|
B.est <- Reduce(`%x%`, rev(alphas.est))
|
|
|
|
err.alphas <- mapply(dist.subspace, alphas, alphas.est, MoreArgs = list(normalize = TRUE))
|
|
err.Omegas <- mapply(norm, Map(`-`, Omegas, Omegas.est), MoreArgs = list(type = "F"))
|
|
|
|
if (iter > 1) { cat("\033[9A") }
|
|
cat(sprintf("\n\033[2mIter: loss - dist\n\033[0m%4d: %8.3f - %8.3f",
|
|
iter,
|
|
log.likelihood(X, Fy, eta1.est, alphas.est, Omegas.est),
|
|
dist.subspace(B.true, B.est, normalize = TRUE)
|
|
),
|
|
"\033[2mMSE eta1\033[0m",
|
|
mean((eta1 - eta1.est)^2),
|
|
"\033[2msubspace distances of alphas\033[0m",
|
|
do.call(paste, Map(sprintf, err.alphas, MoreArgs = list(fmt = "%8.3f"))),
|
|
"\033[2mFrob. norm of Omega differences\033[0m",
|
|
do.call(paste, Map(sprintf, err.Omegas, MoreArgs = list(fmt = "%8.3f"))),
|
|
sep = "\n "
|
|
)
|
|
}
|
|
|
|
# now call the GMLM fitting routine with performance profiling
|
|
system.time( # profvis::profvis(
|
|
fit.gmlm <- GMLM.default(
|
|
X, Fy, sample.axis = sample.axis, max.iter = 10000L, logger = logger
|
|
)
|
|
)
|
|
|
|
|
|
# Iter: loss - dist
|
|
# 7190: 50.583 - 0.057
|
|
# MSE eta1
|
|
# 0.02694658
|
|
# subspace distances of alphas
|
|
# 0.043 0.035 0.034
|
|
# Frob. norm of Omega differences
|
|
# 0.815 1.777 12.756
|
|
# time user system elapsed
|
|
# 342.279 555.630 183.653
|