31 lines
892 B
R
31 lines
892 B
R
#' Multivariate Normal Distribution.
|
|
#'
|
|
#' Random generation for the multivariate normal distribution.
|
|
#' \deqn{X \sim N_p(\mu, \Sigma)}{X ~ N_p(\mu, \Sigma)}
|
|
#'
|
|
#' @param n number of samples.
|
|
#' @param mu mean
|
|
#' @param sigma covariance matrix.
|
|
#'
|
|
#' @return a \eqn{n\times p}{n x p} matrix with samples in its rows.
|
|
#'
|
|
#' @examples \dontrun{
|
|
#' rmvnorm(20, sigma = matrix(c(2, 1, 1, 2), 2))
|
|
#' rmvnorm(20, mu = c(3, -1, 2))
|
|
#' }
|
|
#'
|
|
#' @keywords internal
|
|
rmvnorm <- function(n = 1, mu = rep(0, p), sigma = diag(p)) {
|
|
if (!missing(sigma)) {
|
|
p <- nrow(sigma)
|
|
} else if (!missing(mu)) {
|
|
mu <- matrix(mu, ncol = 1)
|
|
p <- nrow(mu)
|
|
} else {
|
|
stop("At least one of 'mu' or 'sigma' must be supplied.")
|
|
}
|
|
|
|
# See: https://en.wikipedia.org/wiki/Multivariate_normal_distribution
|
|
return(rep(mu, each = n) + matrix(rnorm(n * p), n) %*% chol(sigma))
|
|
}
|