tensor_predictors/tensorPredictors/R/kpir_ls.R

64 lines
2.2 KiB
R

#' Per mode (axis) alternating least squares estimate
#'
#' @param sample.axis index of the sample mode, a.k.a. observation axis index
#'
#' @export
kpir.ls <- function(X, Fy, max.iter = 20L, sample.axis = 1L,
eps = .Machine$double.eps, logger = NULL
) {
# Check if X and Fy have same number of observations
if (!is.array(Fy)) {
# scalar response case (add new axis of size 1)
dim(Fy) <- local({
dims <- rep(1, length(dim(X)))
dims[sample.axis] <- length(Fy)
dims
})
}
# Check dimensions
stopifnot(length(dim(X)) == length(dim(Fy)))
stopifnot(dim(X)[sample.axis] == dim(Fy)[sample.axis])
# and model constraints
stopifnot(all(dim(Fy) <= dim(X)))
# mode index sequence (exclude sample mode, a.k.a. observation axis)
modes <- seq_along(dim(X))[-sample.axis]
### Step 1: initial per mode estimates
alphas <- Map(function(mode, ncol) {
La.svd(mcrossprod(X, mode = mode), ncol)$u
}, modes, dim(Fy)[modes])
# Call history callback (logger) before the first iteration
if (is.function(logger)) { do.call(logger, c(0L, NA, rev(alphas))) }
### Step 2: iterate per mode (axis) least squares estimates
for (iter in seq_len(max.iter)) {
# cyclic iterate over modes
for (j in seq_along(modes)) {
# least squares solution for `alpha_j | alpha_i, i != j`
Z <- mlm(Fy, alphas[-j], modes = modes[-j])
alphas[[j]] <- t(solve(mcrossprod(Z, mode = modes[j]),
tcrossprod(mat(Z, modes[j]), mat(X, modes[j]))))
# TODO: alphas[[j]] <- t(solve(mcrossprod(Z, j), mcrossprod(Z, X, j)))
}
# Call logger (invoke history callback)
if (is.function(logger)) { do.call(logger, c(iter, NA, rev(alphas))) }
# TODO: add some kind of break condition
}
### Step 3: Moment estimates for `Delta_i`
# Residuals
R <- X - mlm(Fy, alphas, modes = modes)
# Moment estimates for `Delta_i`s
Deltas <- Map(mcrossprod, list(R), mode = modes)
Deltas <- Map(`*`, 1 / dim(X)[sample.axis], Deltas)
list(alphas = structure(alphas, names = as.character(modes)),
Deltas = structure(Deltas, names = as.character(modes)))
}