tensor_predictors/sim/sim_2a_ising.R

316 lines
11 KiB
R

# library(tensorPredictors)
devtools::load_all("~/Work/tensorPredictors/tensorPredictors", export_all = FALSE)
library(logisticPCA)
# library(RGCCA)
# Use modified version of `RGCCA`
# Reasons (on Ubuntu 22.04 LTS):
# - compatible with `Rscript`
# - about 4 times faster for small problems
# Changes:
# - Run in main thread, avoid `parallel::makeCluster` if `n_cores == 1`
# (file "R/mgccak.R" lines 81:103)
# - added `Encoding: UTF-8`
# (file "DESCRIPTION")
suppressWarnings({
devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
})
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_2a_ising-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# Set PRNG seed for reproducability
# Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
# which is `R`s way if indicating an integer.
set.seed(0x2aL, "Mersenne-Twister", "Inversion", "Rejection")
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
dimX <- c(2, 3) # predictor `X` dimension
dimF <- rep(1, length(dimX)) # "function" `F(y)` of responce `y` dimension
betas <- Map(diag, 1, dimX, dimF)
Omegas <- list(toeplitz(c(0, -2)), toeplitz(seq(1, 0, by = -0.5)))
# data sampling routine
sample.data <- function(sample.size, betas, Omegas) {
dimX <- mapply(nrow, betas)
dimF <- mapply(ncol, betas)
# generate response (sample axis is last axis)
y <- runif(prod(sample.size, dimF), -2, 2)
F <- array(y, dim = c(dimF, sample.size)) # ~ U[-1, 1]
Omega <- Reduce(kronecker, rev(Omegas))
X <- apply(F, length(dim(F)), function(Fi) {
dim(Fi) <- dimF
params <- diag(as.vector(mlm(Fi, betas))) + Omega
tensorPredictors::ising_sample(1, params)
})
dim(X) <- c(dimX, sample.size)
list(X = X, F = F, y = y, sample.axis = length(dim(X)))
}
lpca.hyper.param <- local({
c(X, F, y, sample.axis) %<-% sample.data(1e3, betas, Omegas)
vecX <- mat(X, sample.axis)
CV <- cv.lpca(vecX, ks = prod(dimF), ms = seq(1, 20, by = 0.5))
# plot(CV)
as.numeric(colnames(CV))[which.min(CV)]
})
# Create a CSV logger to write simulation results to
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("sample.size", "rep", outer(
c("time", "dist.subspace"), # measures
c("gmlm", "tnormal", "pca", "hopca", "lpca", "clpca", "tsir", "mgcca"), # methods
paste, sep = "."
))
)
# compute true (full) model parameters to compair estimates against
B.true <- Reduce(`%x%`, rev(betas))
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
# fit different models
# Wrapped in try-catch clock to ensure the simulation continues,
# if an error occures continue with nest resplication and log an error message
try.catch.block <- tryCatch({
time.gmlm <- system.time(
fit.gmlm <- gmlm_ising(X, F, sample.axis = sample.axis)
)["user.self"]
time.tnormal <- -1 # part of Ising gmlm (not relevent here)
time.pca <- system.time(
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
)["user.self"]
time.hopca <- system.time(
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
)["user.self"]
time.lpca <- system.time(
fit.lpca <- logisticPCA(mat(X, sample.axis), k = prod(dimF), m = lpca.hyper.param)
)["user.self"]
time.clpca <- system.time(
fit.clpca <- convexLogisticPCA(mat(X, sample.axis), k = prod(dimF), m = lpca.hyper.param)
)["user.self"]
time.tsir <- system.time(
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
)["user.self"]
# `mgcca` expects the first axis to be the sample axis
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X1, y), # `drop` removes 1D axis
quiet = TRUE,
scheme = "factorial",
ncomp = c(1, 1)
)
)["user.self"]
}, error = print)
# Drop comparison in case any error (in any fitting routine)
if (inherits(try.catch.block, "error")) { next }
# Compute true reduction matrix
B.gmlm <- with(fit.gmlm, Reduce(`%x%`, rev(betas)))
B.tnormal <- with(attr(fit.gmlm, "tensor_normal"), Reduce(`%x%`, rev(betas)))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.lpca <- fit.lpca$U
B.clpca <- fit.clpca$U
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
# `P_A = A (A' A)^-1 A'` and the normalization means that with
# respect to the dimensions of `A, B` the subspace distance is in the
# range `[0, 1]`.
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.tnormal <- dist.subspace(B.true, B.tnormal, normalize = TRUE)
dist.subspace.pca <- dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace.lpca <- dist.subspace(B.true, B.lpca, normalize = TRUE)
dist.subspace.clpca <- dist.subspace(B.true, B.clpca, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace.mgcca <- dist.subspace(B.true, B.mgcca, normalize = TRUE)
# # Projection Distances: Spectral norm (2-norm) `|| P_A - P_B ||_2`.
# equiv to Subspace distance in this case
# Call CSV logger writing results to file
logger()
# print progress
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d\n",
sample.size, which(sample.size == sample.sizes),
length(sample.sizes), rep, reps))
}
}
### read simulation results generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
sim <- read.csv(log.file)
plot.sim(sim, "dist.subspace", main = "Subspace Distance",
xlab = "Sample Size", ylab = "Distance")
# plot.sim(sim, "dist.projection", main = "Projection Distance",
# xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "time", main = "Runtime",
xlab = "Sample Size", ylab = "Time [s]", ylim = c(0, 18))
# aggr <- aggregate(sim, list(sim$sample.size), sd)
# stats <- aggr[, c(2, 5, 7, 9, 11, 13, 15, 17, 19)]
# names(stats) <- Map(tail, strsplit(names(stats), ".", fixed = TRUE), 1)
# round(stats * 100, 2)
# sim <- sim[!startsWith(names(sim), "time")]
# sim <- sim[names(sim) != "rep"]
# names(sim) <- strsplit(names(stats), ".", fixed = TRUE)
# (as.data.frame(Map(function(m, s) {
# paste0(round(m, 2), " (", round(s, 2), ")")
# },
# aggregate(sim, list(sim$size), mean),
# aggregate(sim, list(sim$size), sd)
# )))
# $n$ & gmlm & pca & hopca lpca & clpca & tsir & mgcca
# 100 & 0.34 (0.14) & 0.90 (0.04) & 0.90 (0.05) 0.94 (0.09) & 1 0.91 (0.03) & 0.48 (0.19) & 0.55 (0.13)
# 200 & 0.25 (0.11) & 0.90 (0.03) & 0.90 (0.03) 0.96 (0.07) & 2 0.91 (0.02) & 0.38 (0.16) & 0.53 (0.10)
# 300 & 0.20 (0.09) & 0.89 (0.02) & 0.89 (0.02) 0.97 (0.06) & 3 0.91 (0.02) & 0.29 (0.13) & 0.51 (0.11)
# 500 & 0.16 (0.07) & 0.90 (0.02) & 0.90 (0.02) 0.98 (0.01) & 4 0.91 (0.01) & 0.23 (0.10) & 0.50 (0.08)
# 750 & 0.13 (0.05) & 0.90 (0.01) & 0.90 (0.01) 0.98 (0.02) & 5 0.91 (0.01) & 0.23 (0.08) & 0.53 (0.06)
if (FALSE) {
################################################################################
### Work In Progress ###
################################################################################
library(tensorPredictors)
dimX <- c(3, 3, 3)
dimF <- c(1, 1, 1)
betas <- Map(diag, 1, dimX, dimF)
Omegas <- rev(list(
toeplitz(-1 * (seq_len(dimX[1]) == 2L)),
toeplitz(seq(1, 0, len = dimX[2])),
diag(dimX[3])
))
Omega <- Reduce(kronecker, rev(Omegas))
layout(matrix(c(
1, 3, 4,
2, 3, 5,
6, 6, 6
), nrow = 3, byrow = TRUE), heights = c(8, 8, 1))
`E(X |` <- function(Y) {
array(diag(ising_m2(diag(as.vector(mlm(array(Y, dimF), betas))) + Omega)), dimX)
}
`E(X |`(Y = -2)
`E(X |`(Y = +2)
col <- hcl.colors(256, "Blue-Red 3", rev = FALSE)
matrixImage(`E(X |`(Y = -2), main = "E[X | Y = -2]", zlim = c(0, 1), col = col)
matrixImage(`E(X |`(Y = -1), main = "E[X | Y = -1]", zlim = c(0, 1), col = col)
matrixImage(`E(X |`(Y = 0), main = "E[X | Y = 0]", zlim = c(0, 1), col = col)
matrixImage(`E(X |`(Y = +1), main = "E[X | Y = +1]", zlim = c(0, 1), col = col)
matrixImage(`E(X |`(Y = +2), main = "E[X | Y = +2]", zlim = c(0, 1), col = col)
{
restor.par <- par(mar = c(1.1, 2.1, 0, 2.1))
plot(0:1, 0:1, type = "n", xlab = "", ylab = "", axes = FALSE)
rasterImage(as.raster(matrix(col, nrow = 1)), 0, 0, 1, 1)
mtext("0", side = 2, las = 1, line = -3)
mtext("1", side = 4, las = 1, line = -3)
par(restor.par)
}
sample.size <- 100
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
# Design matrix containing vectorized X's
vecX <- mat(X, sample.axis)
fit.gmlm <- gmlm_ising(X, F)
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
fit.mgcca <- local({
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
F1 <- aperm(F, c(sample.axis, seq_along(dim(X))[-sample.axis]))
mgcca(
list(X1, drop(F1)), # `drop` removes 1D axis
quiet = TRUE,
scheme = "factorial",
ncomp = rep(prod(dimF), 2)
)
})
fit.lpca <- logisticPCA(vecX, k = prod(dimF), m = m)
fit.clpca <- convexLogisticPCA(vecX, k = prod(dimF), m = m)
B.gmlm <- Reduce(kronecker, rev(fit.gmlm$betas))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
B.lpca <- fit.lpca$U
B.clpca <- fit.clpca$U
# B.lsvd <- ???
dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace(B.true, B.mgcca, normalize = TRUE)
dist.subspace(B.true, B.lpca, normalize = TRUE)
dist.subspace(B.true, B.clpca, normalize = TRUE)
################################################################################
### End - Work In Progress ###
################################################################################
}