add: rtensornorm (sample tensor normal),
add: mcrossprod (mode crossprod), wip: simulations, add: notes on multi-array (tensor) normal sampling, wip: initial estimates for alpha, beta, fix: scaling in kpir_approx
This commit is contained in:
parent
d95500c56e
commit
b8064c90ef
|
@ -66,6 +66,15 @@
|
|||
\newcommand{\pinv}[1]{{{#1}^{\dagger}}} % `Moore-Penrose pseudoinverse`
|
||||
\newcommand{\todo}[1]{{\color{red}TODO: #1}}
|
||||
|
||||
% \DeclareFontFamily{U}{mathx}{\hyphenchar\font45}
|
||||
% \DeclareFontShape{U}{mathx}{m}{n}{
|
||||
% <5> <6> <7> <8> <9> <10>
|
||||
% <10.95> <12> <14.4> <17.28> <20.74> <24.88>
|
||||
% mathx10
|
||||
% }{}
|
||||
% \DeclareSymbolFont{mathx}{U}{mathx}{m}{n}
|
||||
% \DeclareMathSymbol{\bigtimes}{1}{mathx}{"91}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
@ -73,6 +82,35 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%% Introduction %%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Notation}
|
||||
We start with a brief summary of the used notation.
|
||||
|
||||
\todo{write this}
|
||||
|
||||
Let $\ten{A}$ be a order (rank) $r$ tensor of dimensions $p_1\times ... \times p_r$ and the matrices $\mat{B}_i$ of dimensions $q_i\times p_i$ for $i = 1, ..., r$, then
|
||||
\begin{displaymath}
|
||||
\ten{A} \ttm[1] \mat{B}_1 \ttm[2] \ldots \ttm[r] \mat{B}_r
|
||||
= \ten{A}\times\{ \mat{B}_1, ..., \mat{B}_r \}
|
||||
= \ten{A}\times_{i\in[r]} \mat{B}_i
|
||||
= (\ten{A}\times_{i\in[r]\backslash j} \mat{B}_i)\ttm[j]\mat{B}_j
|
||||
\end{displaymath}
|
||||
As an alternative example consider
|
||||
\begin{displaymath}
|
||||
\ten{A}\times_2\mat{B}_2\times_3\mat{B}_3 = \ten{A}\times\{ \mat{I}, \mat{B}_2, \mat{B}_3 \} = \ten{A}\times_{i\in\{2, 3\}}\mat{B}_i
|
||||
\end{displaymath}
|
||||
Another example
|
||||
\begin{displaymath}
|
||||
\mat{B}\mat{A}\t{\mat{C}} = \mat{A}\times_1\mat{B}\times_2\mat{C}
|
||||
= \mat{A}\times\{\mat{B}, \mat{C}\}
|
||||
\end{displaymath}
|
||||
|
||||
\begin{displaymath}
|
||||
(\ten{A}\ttm[i]\mat{B})_{(i)} = \mat{B}\ten{A}_{(i)}
|
||||
\end{displaymath}
|
||||
|
||||
\todo{continue}
|
||||
|
||||
|
||||
\section{Introduction}
|
||||
We assume the model
|
||||
\begin{displaymath}
|
||||
|
@ -415,15 +453,45 @@ This leads to the following form of the differential of $\tilde{l}$ given by
|
|||
and therefore the gradients
|
||||
\begin{align*}
|
||||
\nabla_{\mat{\alpha}}\tilde{l}(\mat{\alpha}, \mat{\beta}) &= \sum_{i = 1}^n \t{\mat{G}_i}\mat{\beta}\mat{f}_{y_i}
|
||||
= \ten{G}_{(3)}\t{(\ten{F}\ttm[2]\beta)_{(3)}}, \\
|
||||
= \ten{G}_{(3)}\t{(\ten{F}\ttm[2]\mat{\beta})_{(3)}}, \\
|
||||
\nabla_{\mat{\beta}} \tilde{l}(\mat{\alpha}, \mat{\beta}) &= \sum_{i = 1}^n \mat{G}_i\mat{\alpha}\t{\mat{f}_{y_i}}
|
||||
= \ten{G}_{(2)}\t{(\ten{F}\ttm[3]\beta)_{(2)}}.
|
||||
= \ten{G}_{(2)}\t{(\ten{F}\ttm[3]\mat{\alpha})_{(2)}}.
|
||||
\end{align*}
|
||||
|
||||
\todo{check the tensor version of the gradient!!!}
|
||||
|
||||
\newpage
|
||||
|
||||
\section{Thoughts on initial value estimation}
|
||||
\todo{This section uses an alternative notation as it already tries to generalize to general multi-dimensional arrays. Furthermore, one of the main differences is that the observation are indexed in the \emph{last} mode. The benefit of this is that the mode product and parameter matrix indices match not only in the population model but also in sample versions.}
|
||||
Let $\ten{X}, \ten{F}$ be order (rank) $r$ tensors of dimensions $p_1\times ... \times p_r$ and $q_1\times ... \times q_r$, respectively. Also denote the error tensor $\epsilon$ of the same order and dimensions as $\ten{X}$. The considered model for the $i$'th observation is
|
||||
\begin{displaymath}
|
||||
\ten{X}_i = \ten{\mu} + \ten{F}_i\times\{ \mat{\alpha}_1, ..., \mat{\alpha}_r \} + \ten{\epsilon}_i
|
||||
\end{displaymath}
|
||||
where we assume $\ten{\epsilon}_i$ to be i.i.d. mean zero tensor normal distributed $\ten{\epsilon}\sim\mathcal{TM}(0, \mat{\Delta}_1, ..., \mat{\Delta}_r)$ for $\mat{\Delta}_j\in\mathcal{S}^{p_j}_{++}$, $j = 1, ..., r$. Given $i = 1, ..., n$ observations the collected model containing all observations
|
||||
\begin{displaymath}
|
||||
\ten{X} = \ten{\mu} + \ten{F}\times\{ \mat{\alpha}_1, ..., \mat{\alpha}_r, \mat{I}_n \} + \ten{\epsilon}
|
||||
\end{displaymath}
|
||||
which is almost identical as the observations $\ten{X}_i, \ten{F}_i$ are stacked on an addition $r + 1$ mode leading to response, predictor and error tensors $\ten{X}, \ten{F}$ of order (rank) $r + 1$ and dimensions $p_1\times...\times p_r\times n$ for $\ten{X}, \ten{\epsilon}$ and $q_1\times...\times q_r\times n$ for $\ten{F}$.
|
||||
|
||||
In the following we assume w.l.o.g that $\ten{\mu} = 0$, as if this is not true we simply replace $\ten{X}_i$ with $\ten{X}_i - \ten{\mu}$ for $i = 1, ..., n$ before collecting all the observations in the response tensor $\ten{X}$.
|
||||
|
||||
The goal here is to find reasonable estimates for $\mat{\alpha}_i$, $i = 1, ..., n$ for the mean model
|
||||
\begin{displaymath}
|
||||
\E \ten{X}|\ten{F}, \mat{\alpha}_1, ..., \mat{\alpha}_r = \ten{F}\times\{\mat{\alpha}_1, ..., \mat{\alpha}_r, \mat{I}_n\}
|
||||
= \ten{F}\times_{i\in[r]}\mat{\alpha}_i.
|
||||
\end{displaymath}
|
||||
Under the mean model we have using the general mode product relation $(\ten{A}\times_j\mat{B})_{(j)} = \mat{B}\ten{A}_{(j)}$ we get
|
||||
\begin{align*}
|
||||
\ten{X}_{(j)}\t{\ten{X}_{(j)}} \overset{\text{SVD}}{=} \mat{U}_j\mat{D}_j\t{\mat{U}_j}
|
||||
= \mat{\alpha}_j(\ten{F}\times_{i\in[r]\backslash j}\mat{\alpha}_i)_{(j)}
|
||||
\t{(\ten{F}\times_{i\in[r]\backslash j}\mat{\alpha}_i)_{(j)}}\t{\mat{\alpha}_j}
|
||||
\end{align*}
|
||||
for the $j = 1, ..., r$ modes. Using this relation we construct an iterative estimation process by setting the initial estimates of $\hat{\mat{\alpha}}_j^{(0)} = \mat{U}_j[, 1:q_j]$ which are the first $q_j$ columns of $\mat{U}_j$.
|
||||
|
||||
\todo{continue}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%% Numerical Examples %%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
@ -596,6 +664,31 @@ if and only if $\vec\mat{X}\sim\mathcal{N}_{p q}(\vec\mat\mu, \mat\Delta_1\otime
|
|||
f(\mat{X}) = \frac{1}{(2\pi)^{p q / 2}|\mat\Delta_1|^{p / 2}|\mat\Delta_2|^{q / 2}}\exp\left(-\frac{1}{2}\tr(\mat\Delta_1^{-1}\t{(\mat X - \mat \mu)}\mat\Delta_2^{-1}(\mat X - \mat \mu))\right).
|
||||
\end{displaymath}
|
||||
|
||||
\section{Sampling form a Multi-Array Normal Distribution}
|
||||
Let $\ten{X}$ be an order (rank) $r$ Multi-Array random variable of dimensions $p_1\times...\times p_r$ following a Multi-Array (or Tensor) Normal distributed
|
||||
\begin{displaymath}
|
||||
\ten{X}\sim\mathcal{TN}(\mu, \mat{\Delta}_1, ..., \mat{\Delta}_r).
|
||||
\end{displaymath}
|
||||
Its density is given by
|
||||
\begin{displaymath}
|
||||
f(\ten{X}) = \Big( \prod_{i = 1}^r \sqrt{(2\pi)^{p_i}|\mat{\Delta}_i|^{q_i}} \Big)^{-1}
|
||||
\exp\!\left( -\frac{1}{2}\langle \ten{X} - \mu, (\ten{X} - \mu)\times\{\mat{\Delta}_1^{-1}, ..., \mat{\Delta}_r^{-1}\} \rangle \right)
|
||||
\end{displaymath}
|
||||
with $q_i = \prod_{j \neq i}p_j$. This is equivalent to the vectorized $\vec\ten{X}$ following a Multi-Variate Normal distribution
|
||||
\begin{displaymath}
|
||||
\vec{\ten{X}}\sim\mathcal{N}_{p}(\vec{\mu}, \mat{\Delta}_r\otimes...\otimes\mat{\Delta}_1)
|
||||
\end{displaymath}
|
||||
with $p = \prod_{i = 1}^r p_i$.
|
||||
|
||||
When sampling from the Multi-Array Normal one way is to sample from the Multi-Variate Normal and then reshaping the result, but this is usually very inefficient because it requires to store the multi-variate covariance matrix which is very big. Instead, it is more efficient to sample $\ten{Z}$ as a tensor of the same shape as $\ten{X}$ with standard normal entries and then transform the $\ten{Z}$ to follow the Multi-Array Normal as follows
|
||||
\begin{displaymath}
|
||||
\ten{Z}\sim\mathcal{TN}(0, \mat{I}_{p_1}, ..., \mat{I}_{p_r})
|
||||
\quad\Rightarrow\quad
|
||||
\ten{X} = \ten{Z}\times\{\mat{\Delta}_1^{1/2}, ..., \mat{\Delta}_r^{1/2}\} + \mu\sim\mathcal{TN}(\mu, \mat{\Delta}_1, ..., \mat{\Delta}_r).
|
||||
\end{displaymath}
|
||||
where the sampling from the standard Multi-Array Normal is done by sampling all of the elements of $\ten{Z}$ from a standard Normal.
|
||||
|
||||
\todo{Check this!!!}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%% Reference Summaries %%%
|
||||
|
|
|
@ -2,6 +2,16 @@ library(tensorPredictors)
|
|||
library(dplyr)
|
||||
library(ggplot2)
|
||||
|
||||
## Logger callbacks
|
||||
log.prog <- function(max.iter) {
|
||||
function(iter, loss, alpha, beta, ...) {
|
||||
select <- as.integer(seq(1, max.iter, len = 30) <= iter)
|
||||
cat("\r[", paste(c(" ", "=")[1 + select], collapse = ""),
|
||||
"] ", iter, "/", max.iter, sep = "")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
### Exec all methods for a given data set and collect logs ###
|
||||
sim <- function(X, Fy, shape, alpha.true, beta.true, max.iter = 500L) {
|
||||
|
||||
|
@ -61,44 +71,40 @@ sim <- function(X, Fy, shape, alpha.true, beta.true, max.iter = 500L) {
|
|||
rbind(hist.base, hist.new, hist.momentum, hist.approx) #, hist.kron
|
||||
}
|
||||
|
||||
## Plot helper functions
|
||||
plot.hist <- function(hist, response, ...) {
|
||||
ggplot(hist, aes(x = iter, color = method, group = interaction(method, repetition))) +
|
||||
geom_line(aes_(y = as.name(response)), na.rm = TRUE) +
|
||||
geom_point(data = with(sub <- subset(hist, !is.na(as.symbol(response))),
|
||||
aggregate(sub, list(method, repetition), tail, 1)
|
||||
), aes_(y = as.name(response))) +
|
||||
labs(...) +
|
||||
theme(legend.position = "bottom")
|
||||
}
|
||||
plot.stats <- function(hist, response, ..., title = "Stats") {
|
||||
ggplot(hist, aes_(x = quote(iter), y = as.name(response),
|
||||
color = quote(method), group = quote(method))) +
|
||||
geom_ribbon(aes(color = NULL, fill = method), alpha = 0.2,
|
||||
stat = "summary", fun.min = "min", fun.max = "max", na.rm = TRUE) +
|
||||
geom_ribbon(aes(color = NULL, fill = method), alpha = 0.4,
|
||||
stat = "summary", na.rm = TRUE,
|
||||
fun.min = function(y) quantile(y, 0.25),
|
||||
fun.max = function(y) quantile(y, 0.75)) +
|
||||
geom_line(stat = "summary", fun = "mean", na.rm = TRUE) +
|
||||
labs(title = title, ...) +
|
||||
theme(legend.position = "bottom")
|
||||
}
|
||||
plot.mean <- function(hist, response, ..., title = "Mean") {
|
||||
ggplot(hist, aes_(x = quote(iter), y = as.name(response),
|
||||
color = quote(method), group = quote(method))) +
|
||||
geom_line(stat = "summary", fun = "mean", na.rm = TRUE) +
|
||||
labs(title = title, ...) +
|
||||
theme(legend.position = "bottom")
|
||||
}
|
||||
plot.median <- function(hist, response, ..., title = "Median") {
|
||||
ggplot(hist, aes_(x = quote(iter), y = as.name(response),
|
||||
color = quote(method), group = quote(method))) +
|
||||
geom_line(stat = "summary", fun = "median", na.rm = TRUE) +
|
||||
labs(title = title, ...) +
|
||||
theme(legend.position = "bottom")
|
||||
## Plot helper function
|
||||
plot.hist2 <- function(hist, response, type = "all", ...) {
|
||||
# Extract final results from history
|
||||
sub <- na.omit(hist[c("iter", response, "method", "repetition")])
|
||||
sub <- aggregate(sub, list(sub$method, sub$repetition), tail, 1)
|
||||
|
||||
# Setup ggplot
|
||||
p <- ggplot(hist, aes_(x = quote(iter),
|
||||
y = as.name(response),
|
||||
color = quote(method),
|
||||
group = quote(interaction(method, repetition))))
|
||||
# Add requested layers
|
||||
if (type == "all") {
|
||||
p <- p + geom_line(na.rm = TRUE)
|
||||
p <- p + geom_point(data = sub)
|
||||
} else if (type == "mean") {
|
||||
p <- p + geom_line(alpha = 0.5, na.rm = TRUE, linetype = "dotted")
|
||||
p <- p + geom_point(data = sub, alpha = 0.5)
|
||||
p <- p + geom_line(aes(group = method),
|
||||
stat = "summary", fun = "mean", na.rm = TRUE)
|
||||
} else if (type == "median") {
|
||||
p <- p + geom_line(alpha = 0.5, na.rm = TRUE, linetype = "dotted")
|
||||
p <- p + geom_point(data = sub, alpha = 0.5)
|
||||
p <- p + geom_line(aes(group = method),
|
||||
stat = "summary", fun = "median", na.rm = TRUE)
|
||||
}
|
||||
# return with theme and annotations
|
||||
p + labs(...) + theme(legend.position = "bottom")
|
||||
}
|
||||
|
||||
################################################################################
|
||||
### Sim 1 / vec(X) has AR(0.5) Covariance ###
|
||||
################################################################################
|
||||
|
||||
## Generate some test data / DEBUG
|
||||
n <- 200 # Sample Size
|
||||
p <- sample(1:15, 1) # 11
|
||||
|
@ -137,39 +143,27 @@ saveRDS(hist, file = sprintf("AR_%s.rds", datetime))
|
|||
# for GGPlot2, as factors for grouping
|
||||
hist$repetition <- factor(hist$repetition)
|
||||
|
||||
plot.hist(hist, "loss")
|
||||
dev.print(png, file = sprintf("sim01_loss_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "loss")
|
||||
dev.print(png, file = sprintf("sim01_loss_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
|
||||
plot.hist(hist, "dist")
|
||||
dev.print(png, file = sprintf("sim01_dist_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "dist")
|
||||
dev.print(png, file = sprintf("sim01_dist_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
|
||||
plot.hist(hist, "dist.alpha")
|
||||
dev.print(png, file = sprintf("sim01_dist_alpha_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "dist.alpha")
|
||||
dev.print(png, file = sprintf("sim01_dist_alpha_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
|
||||
plot.hist(hist, "dist.beta")
|
||||
dev.print(png, file = sprintf("sim01_dist_beta_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "dist.beta")
|
||||
dev.print(png, file = sprintf("sim01_dist_beta_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
|
||||
plot.hist(hist, "norm.alpha")
|
||||
dev.print(png, file = sprintf("sim01_norm_alpha_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "norm.alpha")
|
||||
dev.print(png, file = sprintf("sim01_norm_alpha_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
|
||||
plot.hist(hist, "norm.beta")
|
||||
dev.print(png, file = sprintf("sim01_norm_beta_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "norm.beta")
|
||||
dev.print(png, file = sprintf("sim01_norm_beta_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
# Save simulation results
|
||||
sim.name <- "sim01"
|
||||
datetime <- format(Sys.time(), "%Y%m%dT%H%M")
|
||||
saveRDS(hist, file = sprintf("%s_%s.rds", sim.name, datetime))
|
||||
|
||||
# for GGPlot2, as factors for grouping
|
||||
hist$repetition <- factor(hist$repetition)
|
||||
|
||||
for (response in c("loss", "dist", "dist.alpha", "dist.beta")) {
|
||||
for (fun in c("all", "mean", "median")) {
|
||||
print(plot.hist2(hist, response, fun, title = fun) + coord_trans(x = "log1p"))
|
||||
dev.print(png, file = sprintf("%s_%s_%s_%s.png", sim.name, datetime, response, fun),
|
||||
width = 768, height = 768, res = 125)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
################################################################################
|
||||
### Sim 2 / X has AR(0.707) %x% AR(0.707) Covariance ###
|
||||
################################################################################
|
||||
|
||||
n <- 200 # Sample Size
|
||||
p <- 11 # sample(1:15, 1)
|
||||
|
@ -206,80 +200,90 @@ for (rep in 1:reps) {
|
|||
|
||||
|
||||
# Save simulation results
|
||||
sim.name <- "sim02"
|
||||
datetime <- format(Sys.time(), "%Y%m%dT%H%M")
|
||||
saveRDS(hist, file = sprintf("sim02_%s.rds", datetime))
|
||||
saveRDS(hist, file = sprintf("%s_%s.rds", sim.name, datetime))
|
||||
|
||||
# for GGPlot2, as factors for grouping
|
||||
hist$repetition <- factor(hist$repetition)
|
||||
|
||||
plot.hist(hist, "loss")
|
||||
dev.print(png, file = sprintf("sim02_loss_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "loss")
|
||||
dev.print(png, file = sprintf("sim02_loss_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
|
||||
plot.hist(hist, "dist")
|
||||
dev.print(png, file = sprintf("sim02_dist_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "dist")
|
||||
dev.print(png, file = sprintf("sim02_dist_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.mean(hist, "dist")
|
||||
plot.median(hist, "dist")
|
||||
|
||||
plot.hist(hist, "dist.alpha")
|
||||
dev.print(png, file = sprintf("sim02_dist_alpha_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "dist.alpha")
|
||||
dev.print(png, file = sprintf("sim02_dist_alpha_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.mean(hist, "dist.alpha")
|
||||
plot.median(hist, "dist.alpha")
|
||||
|
||||
plot.hist(hist, "dist.beta")
|
||||
dev.print(png, file = sprintf("sim02_dist_beta_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "dist.beta")
|
||||
dev.print(png, file = sprintf("sim02_dist_beta_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.mean(hist, "dist.beta")
|
||||
plot.median(hist, "dist.beta")
|
||||
|
||||
plot.hist(hist, "norm.alpha")
|
||||
dev.print(png, file = sprintf("sim02_norm_alpha_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "norm.alpha")
|
||||
dev.print(png, file = sprintf("sim02_norm_alpha_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
|
||||
plot.hist(hist, "norm.beta")
|
||||
dev.print(png, file = sprintf("sim02_norm_beta_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
plot.stats(hist, "norm.beta")
|
||||
dev.print(png, file = sprintf("sim02_norm_beta_stats_%s.png", datetime), width = 768, height = 768, res = 125)
|
||||
|
||||
plot.hist2 <- function(hist, response, type = "all", ...) {
|
||||
# Extract final results from history
|
||||
sub <- na.omit(hist[c("iter", response, "method", "repetition")])
|
||||
sub <- aggregate(sub, list(sub$method, sub$repetition), tail, 1)
|
||||
|
||||
# Setup ggplot
|
||||
p <- ggplot(hist, aes_(x = quote(iter),
|
||||
y = as.name(response),
|
||||
color = quote(method),
|
||||
group = quote(interaction(method, repetition))))
|
||||
# Add requested layers
|
||||
if (type == "all") {
|
||||
p <- p + geom_line(na.rm = TRUE)
|
||||
p <- p + geom_point(data = sub)
|
||||
} else if (type == "mean") {
|
||||
p <- p + geom_line(alpha = 0.5, na.rm = TRUE, linetype = "dotted")
|
||||
p <- p + geom_point(data = sub, alpha = 0.5)
|
||||
p <- p + geom_line(aes(group = method),
|
||||
stat = "summary", fun = "mean", na.rm = TRUE)
|
||||
} else if (type == "median") {
|
||||
p <- p + geom_line(alpha = 0.5, na.rm = TRUE, linetype = "dotted")
|
||||
p <- p + geom_point(data = sub, alpha = 0.5)
|
||||
p <- p + geom_line(aes(group = method),
|
||||
stat = "summary", fun = "median", na.rm = TRUE)
|
||||
for (response in c("loss", "dist", "dist.alpha", "dist.beta")) {
|
||||
for (fun in c("all", "mean", "median")) {
|
||||
print(plot.hist2(hist, response, fun, title = fun) + coord_trans(x = "log1p"))
|
||||
dev.print(png, file = sprintf("%s_%s_%s_%s.png", sim.name, datetime, response, fun),
|
||||
width = 768, height = 768, res = 125)
|
||||
}
|
||||
# return with theme and annotations
|
||||
p + labs(...) + theme(legend.position = "bottom")
|
||||
}
|
||||
|
||||
plot.hist2(hist, "dist.alpha", "all", title = "all") + coord_trans(x = "log1p")
|
||||
plot.hist2(hist, "dist.alpha", "mean", title = "mean") + coord_trans(x = "log1p")
|
||||
plot.hist2(hist, "dist.alpha", "median", title = "median") + coord_trans(x = "log1p")
|
||||
################################################################################
|
||||
### WIP ###
|
||||
################################################################################
|
||||
n <- 200 # Sample Size
|
||||
p <- 11 # sample(1:15, 1)
|
||||
q <- 3 # sample(1:15, 1)
|
||||
k <- 7 # sample(1:15, 1)
|
||||
r <- 5 # sample(1:15, 1)
|
||||
print(c(n, p, q, k, r))
|
||||
|
||||
alpha.true <- alpha <- matrix(rnorm(q * r), q, r)
|
||||
beta.true <- beta <- matrix(rnorm(p * k), p, k)
|
||||
y <- rnorm(n)
|
||||
Fy <- do.call(cbind, Map(function(slope, offset) {
|
||||
sin(slope * y + offset)
|
||||
},
|
||||
head(rep(seq(1, ceiling(0.5 * k * r)), each = 2), k * r),
|
||||
head(rep(c(0, pi / 2), ceiling(0.5 * k * r)), k * r)
|
||||
))
|
||||
X <- tcrossprod(Fy, kronecker(alpha, beta)) + CVarE:::rmvnorm(n, sigma = Delta)
|
||||
|
||||
Delta.1 <- sqrt(0.5)^abs(outer(seq_len(q), seq_len(q), `-`))
|
||||
Delta.2 <- sqrt(0.5)^abs(outer(seq_len(p), seq_len(p), `-`))
|
||||
Delta <- kronecker(Delta.1, Delta.2)
|
||||
|
||||
shape <- c(p, q, k, r)
|
||||
|
||||
# Base (old)
|
||||
Rprof(fit.base <- kpir.base(X, Fy, shape, max.iter = 500, logger = prog(500)))
|
||||
|
||||
# New (simple Gradient Descent)
|
||||
Rprof(fit.new <- kpir.new(X, Fy, shape, max.iter = 500, logger = prog(500)))
|
||||
|
||||
# Gradient Descent with Nesterov Momentum
|
||||
Rprof(fit.momentum <- kpir.momentum(X, Fy, shape, max.iter = 500, logger = prog(500)))
|
||||
|
||||
# # Residual Covariance Kronecker product assumpton version
|
||||
# Rprof(fit.kron <- kpir.kron(X, Fy, shape, max.iter = 500, logger = prog(500)))
|
||||
|
||||
# Approximated MLE with Nesterov Momentum
|
||||
Rprof("kpir.approx.Rprof")
|
||||
fit.approx <- kpir.approx(X, Fy, shape, max.iter = 500, logger = prog(500))
|
||||
summaryRprof("kpir.approx.Rprof")
|
||||
|
||||
par(mfrow = c(2, 2))
|
||||
matrixImage(Delta, main = expression(Delta))
|
||||
matrixImage(fit.base$Delta, main = expression(hat(Delta)), sub = "base")
|
||||
matrixImage(fit.momentum$Delta, main = expression(hat(Delta)), sub = "momentum")
|
||||
matrixImage(kronecker(fit.approx$Delta.1, fit.approx$Delta.2), main = expression(hat(Delta)), sub = "approx")
|
||||
|
||||
par(mfrow = c(2, 2))
|
||||
matrixImage(Delta.1, main = expression(Delta[1]))
|
||||
matrixImage(fit.approx$Delta.1, main = expression(hat(Delta)[1]), sub = "approx")
|
||||
matrixImage(Delta.2, main = expression(Delta[2]))
|
||||
matrixImage(fit.approx$Delta.2, main = expression(hat(Delta)[2]), sub = "approx")
|
||||
|
||||
par(mfrow = c(2, 2))
|
||||
matrixImage(alpha.true, main = expression(alpha))
|
||||
matrixImage(fit.base$alpha, main = expression(hat(alpha)), sub = "base")
|
||||
matrixImage(fit.momentum$alpha, main = expression(hat(alpha)), sub = "momentum")
|
||||
matrixImage(fit.approx$alpha, main = expression(hat(alpha)), sub = "approx")
|
||||
|
||||
par(mfrow = c(2, 2))
|
||||
matrixImage(beta.true, main = expression(beta))
|
||||
matrixImage(fit.base$beta, main = expression(hat(beta)), sub = "base")
|
||||
matrixImage(fit.momentum$beta, main = expression(hat(beta)), sub = "momentum")
|
||||
matrixImage(fit.approx$beta, main = expression(hat(beta)), sub = "approx")
|
||||
|
||||
|
||||
|
||||
|
||||
################################################################################
|
||||
|
|
|
@ -78,17 +78,17 @@ kpir.approx <- function(X, Fy, shape = c(dim(X)[-1], dim(Fy[-1])),
|
|||
R <- X - (Fy %x_3% alpha0 %x_2% beta0)
|
||||
|
||||
# Covariance estimates and scaling factor
|
||||
Delta.1 <- tcrossprod(mat(R, 3))
|
||||
Delta.2 <- tcrossprod(mat(R, 2))
|
||||
s <- sum(diag(Delta.1))
|
||||
Delta.1 <- tcrossprod(mat(R, 3)) / n
|
||||
Delta.2 <- tcrossprod(mat(R, 2)) / n
|
||||
s <- mean(diag(Delta.1))
|
||||
|
||||
# Inverse Covariances
|
||||
Delta.1.inv <- solve(Delta.1)
|
||||
Delta.2.inv <- solve(Delta.2)
|
||||
|
||||
# cross dependent covariance estimates
|
||||
S.1 <- n^-1 * tcrossprod(mat(R, 3), mat(R %x_2% Delta.2.inv, 3))
|
||||
S.2 <- n^-1 * tcrossprod(mat(R, 2), mat(R %x_3% Delta.1.inv, 2))
|
||||
S.1 <- tcrossprod(mat(R, 3), mat(R %x_2% Delta.2.inv, 3)) / n
|
||||
S.2 <- tcrossprod(mat(R, 2), mat(R %x_3% Delta.1.inv, 2)) / n
|
||||
|
||||
# Evaluate negative log-likelihood (2 pi term dropped)
|
||||
loss <- -0.5 * (n * (p * q * log(s) - p * log(det(Delta.1)) -
|
||||
|
@ -124,17 +124,17 @@ kpir.approx <- function(X, Fy, shape = c(dim(X)[-1], dim(Fy[-1])),
|
|||
R <- X - (Fy %x_3% alpha.moment %x_2% beta.moment)
|
||||
|
||||
# Recompute Covariance Estimates and scaling factor
|
||||
Delta.1 <- tcrossprod(mat(R, 3))
|
||||
Delta.2 <- tcrossprod(mat(R, 2))
|
||||
s <- sum(diag(Delta.1))
|
||||
Delta.1 <- tcrossprod(mat(R, 3)) / n
|
||||
Delta.2 <- tcrossprod(mat(R, 2)) / n
|
||||
s <- mean(diag(Delta.1))
|
||||
|
||||
# Inverse Covariances
|
||||
Delta.1.inv <- solve(Delta.1)
|
||||
Delta.2.inv <- solve(Delta.2)
|
||||
|
||||
# cross dependent covariance estimates
|
||||
S.1 <- n^-1 * tcrossprod(mat(R, 3), mat(R %x_2% Delta.2.inv, 3))
|
||||
S.2 <- n^-1 * tcrossprod(mat(R, 2), mat(R %x_3% Delta.1.inv, 2))
|
||||
S.1 <- tcrossprod(mat(R, 3), mat(R %x_2% Delta.2.inv, 3)) / n
|
||||
S.2 <- tcrossprod(mat(R, 2), mat(R %x_3% Delta.1.inv, 2)) / n
|
||||
|
||||
# Gradient "generating" tensor
|
||||
G <- (sum(S.1 * Delta.1.inv) - p * q / s) * R
|
||||
|
@ -161,12 +161,12 @@ kpir.approx <- function(X, Fy, shape = c(dim(X)[-1], dim(Fy[-1])),
|
|||
|
||||
# Update Residuals, Covariances, ...
|
||||
R <- X - (Fy %x_3% alpha.temp %x_2% beta.temp)
|
||||
Delta.1 <- tcrossprod(mat(R, 3))
|
||||
Delta.2 <- tcrossprod(mat(R, 2))
|
||||
s <- sum(diag(Delta.1))
|
||||
Delta.1 <- tcrossprod(mat(R, 3)) / n
|
||||
Delta.2 <- tcrossprod(mat(R, 2)) / n
|
||||
s <- mean(diag(Delta.1))
|
||||
Delta.1.inv <- solve(Delta.1)
|
||||
Delta.2.inv <- solve(Delta.2)
|
||||
S.1 <- n^-1 * tcrossprod(mat(R, 3), mat(R %x_2% Delta.2.inv, 3))
|
||||
S.1 <- tcrossprod(mat(R, 3), mat(R %x_2% Delta.2.inv, 3)) / n
|
||||
# S.2 not needed
|
||||
|
||||
# Re-evaluate negative log-likelihood
|
||||
|
|
|
@ -0,0 +1,21 @@
|
|||
#' Tensor Mode Crossproduct
|
||||
#'
|
||||
#' C = A_(m) t(A_(m))
|
||||
#'
|
||||
#' For a matrix `A`, the first mode is `mcrossprod(A, 1)` equivalent to
|
||||
#' `A %*% t(A)` (`tcrossprod`). On the other hand for mode two `mcrossprod(A, 2)`
|
||||
#' the equivalence is `t(A) %*% A` (`crossprod`).
|
||||
#'
|
||||
#' @param A multi-dimensional array
|
||||
#' @param mode index (1-indexed)
|
||||
#'
|
||||
#' @returns matrix of dimensions \code{dim(A)[mode] by dim(A)[mode]}.
|
||||
#'
|
||||
#' @note equivalent to \code{tcrossprod(mat(A, mode))} with around the same
|
||||
#' performance but only allocates the result matrix.
|
||||
#'
|
||||
#' @export
|
||||
mcrossprod <- function(A, mode = length(dim(A))) {
|
||||
storage.mode(A) <- "double"
|
||||
.Call("C_mcrossprod", A, as.integer(mode))
|
||||
}
|
|
@ -0,0 +1,49 @@
|
|||
#' Random sampling from a tensor (multi-array) normal distribution
|
||||
#'
|
||||
#' @examples
|
||||
#' n <- 1000
|
||||
#' Sigma.1 <- 0.5^abs(outer(1:5, 1:5, "-"))
|
||||
#' Sigma.2 <- diag(1:4)
|
||||
#' X <- rtensornorm(n, 0, Sigma.1, Sigma.2)
|
||||
#'
|
||||
#' @export
|
||||
rtensornorm <- function(n, mean, ..., sample.mode) {
|
||||
# get covariance matrices
|
||||
cov <- list(...)
|
||||
|
||||
# get sample shape (dimensions of an observation)
|
||||
shape <- unlist(Map(nrow, cov))
|
||||
|
||||
# result tensor dimensions
|
||||
dims <- c(shape, n)
|
||||
|
||||
# validate mean dimensions
|
||||
if (!missing(mean)) {
|
||||
stopifnot(is.numeric(mean))
|
||||
stopifnot(is.array(mean) || length(mean) == 1)
|
||||
stopifnot(length(shape) == length(cov))
|
||||
stopifnot(all(shape == dim(mean)))
|
||||
}
|
||||
|
||||
# sample i.i.d. normal entries
|
||||
X <- array(rnorm(prod(dims)), dim = dims)
|
||||
|
||||
# transform from standard normal to tensor normal with given covariances
|
||||
for (i in seq_along(cov)) {
|
||||
X <- ttm(X, matpow(cov[[i]], 1 / 2), i)
|
||||
}
|
||||
|
||||
# add mean (using recycling, observations on last mode)
|
||||
X <- X + mean
|
||||
|
||||
# permute axis for indeing observations on sample mode (permute first axis
|
||||
# with sample mode axis)
|
||||
if (!missing(sample.mode)) {
|
||||
axis <- seq_len(length(dims) - 1)
|
||||
start <- seq_len(sample.mode - 1)
|
||||
end <- seq_len(length(dims) - sample.mode) + sample.mode - 1
|
||||
X <- aperm(X, c(axis[start], length(dims), axis[end]))
|
||||
}
|
||||
|
||||
X
|
||||
}
|
|
@ -0,0 +1,88 @@
|
|||
// The need for `USE_FC_LEN_T` and `FCONE` is due to a Fortran character string
|
||||
// to C incompatibility. See: Writing R Extentions: 6.6.1 Fortran character strings
|
||||
#define USE_FC_LEN_T
|
||||
#include <R.h>
|
||||
#include <Rinternals.h>
|
||||
#include <R_ext/BLAS.h>
|
||||
#ifndef FCONE
|
||||
#define FCONE
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Tensor Mode Crossproduct
|
||||
*
|
||||
* C = A_(m) t(A_(m))
|
||||
*
|
||||
* For a matrix `A`, the first mode is `mcrossprod(A, 1)` equivalent to
|
||||
* `A %*% t(A)` (`tcrossprod`). On the other hand for mode two `mcrossprod(A, 2)`
|
||||
* the equivalence is `t(A) %*% A` (`crossprod`).
|
||||
*
|
||||
* @param A multi-dimensional array
|
||||
* @param m mode index (1-indexed)
|
||||
*/
|
||||
extern SEXP mcrossprod(SEXP A, SEXP m) {
|
||||
// get zero indexed mode
|
||||
int mode = asInteger(m) - 1;
|
||||
|
||||
// get dimension attribute of A
|
||||
SEXP dim = getAttrib(A, R_DimSymbol);
|
||||
|
||||
// validate mode (0-indexed, must be smaller than the tensor order)
|
||||
if (mode < 0 || length(dim) <= mode) {
|
||||
error("Illegal mode");
|
||||
}
|
||||
|
||||
// the strides
|
||||
// `stride[0] <- prod(dim(X)[seq_len(mode - 1)])`
|
||||
// `stride[1] <- dim(X)[mode]`
|
||||
// `stride[2] <- prod(dim(X)[-seq_len(mode)])`
|
||||
int stride[3] = {1, INTEGER(dim)[mode], 1};
|
||||
for (int i = 0; i < length(dim); ++i) {
|
||||
int size = INTEGER(dim)[i];
|
||||
stride[0] *= (i < mode) ? size : 1;
|
||||
stride[2] *= (i > mode) ? size : 1;
|
||||
}
|
||||
|
||||
// create response matrix C
|
||||
SEXP C = PROTECT(allocMatrix(REALSXP, stride[1], stride[1]));
|
||||
|
||||
// raw data access pointers
|
||||
double* a = REAL(A);
|
||||
double* c = REAL(C);
|
||||
|
||||
// employ BLAS dsyrk (Double SYmmeric Rank K) operation
|
||||
// (C = alpha A A^T + beta C or C = alpha A^T A + beta C)
|
||||
const double zero = 0.0;
|
||||
const double one = 1.0;
|
||||
if (mode == 0) {
|
||||
// mode 1: special case C = A_(1) A_(1)^T
|
||||
// C = 1 A A^T + 0 C
|
||||
F77_CALL(dsyrk)("U", "N", &stride[1], &stride[2],
|
||||
&one, a, &stride[1], &zero, c, &stride[1] FCONE FCONE);
|
||||
} else {
|
||||
// Other modes writen as accumulated sum of matrix products
|
||||
// initialize C to zero
|
||||
memset(c, 0, stride[1] * stride[1] * sizeof(double));
|
||||
|
||||
// Sum over all modes > mode
|
||||
for (int i2 = 0; i2 < stride[2]; ++i2) {
|
||||
// C = 1 A^T A + 1 C
|
||||
F77_CALL(dsyrk)("U", "T", &stride[1], &stride[0],
|
||||
&one, &a[i2 * stride[0] * stride[1]], &stride[0],
|
||||
&one, c, &stride[1] FCONE FCONE);
|
||||
}
|
||||
}
|
||||
|
||||
// Symmetric matrix result is stored in upper triangular part only
|
||||
// Copy upper triangular part to lower
|
||||
for (int j = 0; j + 1 < stride[1]; j++) {
|
||||
for (int i = j + 1; i < stride[1]; ++i) {
|
||||
c[i + j * stride[1]] = c[j + i * stride[1]];
|
||||
}
|
||||
}
|
||||
|
||||
// release C to grabage collector
|
||||
UNPROTECT(1);
|
||||
|
||||
return C;
|
||||
}
|
Loading…
Reference in New Issue