Merge branch 'master' of https://git.art-ist.cc/daniel/tensor_predictors
This commit is contained in:
commit
8da1950d02
|
@ -11,5 +11,6 @@ export(dist.subspace)
|
|||
export(matpow)
|
||||
export(matrixImage)
|
||||
export(reduce)
|
||||
export(tensor_predictor)
|
||||
import(stats)
|
||||
useDynLib(tensorPredictors, .registration = TRUE)
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
#' @param Z additional covariate vector (can be \code{NULL} if not required.
|
||||
#' For regression with intercept set \code{Z = rep(1, n)})
|
||||
#' @param y univariate response vector
|
||||
#' @param lambda penalty term, if set to \code{Inf}
|
||||
#' @param lambda penalty term, if set to \code{Inf} max lambda is computed.
|
||||
#' @param loss loss function, part of the objective function
|
||||
#' @param penalty penalty function with a vector of the singular values if the
|
||||
#' current iterate as arguments. The default function
|
||||
|
@ -68,6 +68,7 @@ RMReg <- function(X, Z, y, lambda = 0,
|
|||
Z <- matrix(0, nrow(X), 1)
|
||||
ZZiZ <- NULL
|
||||
} else {
|
||||
if (!is.matrix(Z)) Z <- as.matrix(Z)
|
||||
# Compute (Z' Z)^{-1} Z used to solve for beta. This is constant
|
||||
# throughout and the variable name stands for "((Z' Z) Inverse) Z"
|
||||
ZZiZ <- solve(crossprod(Z, Z), t(Z))
|
||||
|
@ -89,7 +90,7 @@ RMReg <- function(X, Z, y, lambda = 0,
|
|||
loss1 <- loss(B1, beta, X, Z, y)
|
||||
|
||||
# Start without, the nesterov momentum is zero anyway
|
||||
no.nesterov <- TRUE
|
||||
no.nesterov <- TRUE # Set to FALSE after the first iteration
|
||||
### Repeat untill convergence
|
||||
for (iter in 1:max.iter) {
|
||||
# Extrapolation with Nesterov Momentum
|
||||
|
|
|
@ -1,28 +1,45 @@
|
|||
#' Plots a matrix as an image
|
||||
#'
|
||||
#' @param A a matrix to be plotted
|
||||
#' @param add.values boolean indicating if matrix values are to be written into
|
||||
#' matrix element boxes
|
||||
#' @param main overall title for the plot
|
||||
#' @param sub sub-title of the plot
|
||||
#' @param interpolate a logical vector (or scalar) indicating whether to apply
|
||||
#' linear interpolation to the image when drawing.
|
||||
#' @param ... further arguments passed to \code{\link{rasterImage}}
|
||||
#'
|
||||
#' @examples
|
||||
#' AR <- 0.5^abs(outer(1:10, 1:10, `-`))
|
||||
#' matrixImage(AR, AR > 0.2, main = "Autoregressiv Covariance")
|
||||
#'
|
||||
#' @export
|
||||
matrixImage <- function(A, main = NULL, sub = NULL, interpolate = FALSE, ...) {
|
||||
|
||||
# Scale values of `A` to [0, 1] with min mapped to 1 and max to 0.
|
||||
A <- (max(A) - A) / diff(range(A))
|
||||
|
||||
matrixImage <- function(A, add.values = FALSE,
|
||||
main = NULL, sub = NULL, interpolate = FALSE, ...
|
||||
) {
|
||||
# plot raster image
|
||||
plot(c(0, ncol(A)), c(0, nrow(A)), type = "n", bty = "n", col = "red",
|
||||
xlab = "", ylab = "", xaxt = "n", yaxt = "n", main = main, sub = sub)
|
||||
|
||||
# Add X-axis giving index
|
||||
ind <- seq(1, ncol(A), by = 1)
|
||||
axis(1, at = ind - 0.5, labels = ind, lwd = 0, lwd.ticks = 1)
|
||||
# Add Y-axis
|
||||
ind <- seq(1, nrow(A))
|
||||
axis(2, at = ind - 0.5, labels = rev(ind), lwd = 0, lwd.ticks = 1, las = 1)
|
||||
# Scale values of `A` to [0, 1] with min mapped to 1 and max to 0.
|
||||
S <- (max(A) - A) / diff(range(A))
|
||||
|
||||
rasterImage(A, 0, 0, ncol(A), nrow(A), interpolate = interpolate, ...)
|
||||
# Raster Image ploting the matrix with element values mapped to grayscale
|
||||
# as big elements (original matrix A) are dark and small (negative) elements
|
||||
# are white.
|
||||
rasterImage(S, 0, 0, ncol(A), nrow(A), interpolate = interpolate, ...)
|
||||
|
||||
# Add X-axis giving index
|
||||
x <- seq(1, ncol(A), by = 1)
|
||||
axis(1, at = x - 0.5, labels = x, lwd = 0, lwd.ticks = 1)
|
||||
# Add Y-axis
|
||||
y <- seq(1, nrow(A))
|
||||
axis(2, at = y - 0.5, labels = rev(y), lwd = 0, lwd.ticks = 1, las = 1)
|
||||
|
||||
# Writes matrix values (in colored element grids)
|
||||
if (any(add.values)) {
|
||||
if (length(add.values) > 1) { A[!add.values] <- NA }
|
||||
text(rep(x - 0.5, nrow(A)), rep(rev(y - 0.5), each = ncol(A)), A,
|
||||
adj = 0.5, col = as.integer(S > 0.65))
|
||||
}
|
||||
}
|
||||
|
|
|
@ -18,6 +18,7 @@ log.likelihood <- function(par, X, Fy, Delta.inv, da, db) {
|
|||
sum(error * (error %*% Delta.inv))
|
||||
}
|
||||
|
||||
#' @export
|
||||
tensor_predictor <- function(X, Fy, p, t, k = 1L, r = 1L, d1 = 1L, d2 = 1L,
|
||||
method = "KPIR_LS",
|
||||
eps1 = 1e-2, eps2 = 1e-2, maxit = 10L) {
|
||||
|
|
Loading…
Reference in New Issue