added eeg data and tsir to its analysis

This commit is contained in:
Daniel Kapla 2025-02-05 13:49:35 +01:00
parent b1f25b89da
commit 76d705035f
4 changed files with 96 additions and 42 deletions

2
.gitattributes vendored Normal file
View File

@ -0,0 +1,2 @@
*.rds filter=lfs diff=lfs merge=lfs -text
*.Rds filter=lfs diff=lfs merge=lfs -text

4
.gitignore vendored
View File

@ -45,8 +45,8 @@
## R environment, data and package build intermediate files/folders
# R Data Object files
*.Rds
*.rds
# *.Rds # git-lfs
# *.rds # git-lfs
*.Rdata
# Example code in package build process

View File

@ -25,17 +25,6 @@ c(X, F, y) %<-% local({
list(X, array(y, c(n, 1L, 1L)), y)
})
# fit a tensor normal model to the data sample axis 1 indexes persons)
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = 1L)
# plot the fitted mode wise reductions (for time and sensor axis)
with(fit.gmlm, {
par.reset <- par(mfrow = c(2, 1))
plot(seq(0, 1, len = 256), betas[[1]], main = "Time", xlab = "Time [s]", ylab = expression(beta[1]))
plot(betas[[2]], main = "Sensors", xlab = "Sensor Index", ylab = expression(beta[2]))
par(par.reset)
})
#' (2D)^2 PCA preprocessing
#'
@ -54,31 +43,6 @@ preprocess <- function(X, tpc, ppc) {
}
#' Leave-one-out prediction
#'
#' @param X 3D EEG data (preprocessed or not)
#' @param F binary responce `y` as a 3D tensor, every obs. is a 1 x 1 matrix
loo.predict <- function(X, F) {
sapply(seq_len(dim(X)[1L]), function(i) {
# Fit with i'th observation removes
fit <- gmlm_tensor_normal(X[-i, , ], F[-i, , , drop = FALSE], sample.axis = 1L)
# Reduce the entire data set
r <- as.vector(mlm(X, fit$betas, modes = 2:3, transpose = TRUE))
# Fit a logit model on reduced data with i'th observation removed
logit <- glm(y ~ r, family = binomial(link = "logit"),
data = data.frame(y = y[-i], r = r[-i])
)
# predict i'th response given i'th reduced observation
y.hat <- predict(logit, newdata = data.frame(r = r[i]), type = "response")
# report progress
cat(sprintf("dim: (%d, %d) - %3d/%d\n", dim(X)[2L], dim(X)[3L], i, dim(X)[1L]))
y.hat
})
}
### Classification performance measures
# acc: Accuracy. P(Yhat = Y). Estimated as: (TP+TN)/(P+N).
acc <- function(y.true, y.pred) mean(round(y.pred) == y.true)
@ -97,11 +61,48 @@ auc <- function(y.true, y.pred) as.numeric(pROC::roc(y.true, y.pred, quiet = TRU
auc.sd <- function(y.true, y.pred) sqrt(pROC::var(pROC::roc(y.true, y.pred, quiet = TRUE)))
##################################### GMLM #####################################
# fit a tensor normal model to the data sample axis 1 indexes persons)
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = 1L)
# plot the fitted mode wise reductions (for time and sensor axis)
with(fit.gmlm, {
par.reset <- par(mfrow = c(2, 1))
plot(seq(0, 1, len = 256), betas[[1]], main = "Time", xlab = "Time [s]", ylab = expression(beta[1]))
plot(betas[[2]], main = "Sensors", xlab = "Sensor Index", ylab = expression(beta[2]))
par(par.reset)
})
#' Leave-one-out prediction using GMLM
#'
#' @param X 3D EEG data (preprocessed or not)
#' @param F binary responce `y` as a 3D tensor, every obs. is a 1 x 1 matrix
loo.predict.gmlm <- function(X, F) {
unlist(parallel::mclapply(seq_len(dim(X)[1L]), function(i) {
# Fit with i'th observation removed
fit <- gmlm_tensor_normal(X[-i, , ], F[-i, , , drop = FALSE], sample.axis = 1L)
# Reduce the entire data set
r <- as.vector(mlm(X, fit$betas, modes = 2:3, transpose = TRUE))
# Fit a logit model on reduced data with i'th observation removed
logit <- glm(y ~ r, family = binomial(link = "logit"),
data = data.frame(y = y[-i], r = r[-i])
)
# predict i'th response given i'th reduced observation
y.hat <- predict(logit, newdata = data.frame(r = r[i]), type = "response")
# report progress
cat(sprintf("dim: (%d, %d) - %3d/%d\n", dim(X)[2L], dim(X)[3L], i, dim(X)[1L]))
y.hat
}, mc.cores = getOption("mc.cores", max(1L, parallel::detectCores() - 1L))))
}
# perform preprocessed (reduced) and raw (not reduced) leave-one-out prediction
y.hat.3.4 <- loo.predict(preprocess(X, 3, 4), F)
y.hat.15.15 <- loo.predict(preprocess(X, 15, 15), F)
y.hat.20.30 <- loo.predict(preprocess(X, 20, 30), F)
y.hat <- loo.predict(X, F)
y.hat.3.4 <- loo.predict.gmlm(preprocess(X, 3, 4), F)
y.hat.15.15 <- loo.predict.gmlm(preprocess(X, 15, 15), F)
y.hat.20.30 <- loo.predict.gmlm(preprocess(X, 20, 30), F)
y.hat <- loo.predict.gmlm(X, F)
# classification performance measures table by leave-one-out cross-validation
(loo.cv <- apply(cbind(y.hat.3.4, y.hat.15.15, y.hat.20.30, y.hat), 2, function(y.pred) {
@ -117,3 +118,51 @@ y.hat <- loo.predict(X, F)
#> tnr 0.64444444 0.60000000 0.60000000 0.60000000
#> auc 0.85108225 0.83838384 0.83924964 0.83896104
#> auc.sd 0.03584791 0.03760531 0.03751307 0.03754553
################################## Tensor SIR ##################################
#' Leave-one-out prediction using TSIR
#'
#' @param X 3D EEG data (preprocessed or not)
#' @param y binary responce vector
loo.predict.tsir <- function(X, y) {
unlist(parallel::mclapply(seq_len(dim(X)[1L]), function(i) {
# Fit with i'th observation removed
fit <- TSIR(X[-i, , ], y[-i], c(1L, 1L), sample.axis = 1L)
# Reduce the entire data set
r <- as.vector(mlm(X, fit, modes = 2:3, transpose = TRUE))
# Fit a logit model on reduced data with i'th observation removed
logit <- glm(y ~ r, family = binomial(link = "logit"),
data = data.frame(y = y[-i], r = r[-i])
)
# predict i'th response given i'th reduced observation
y.hat <- predict(logit, newdata = data.frame(r = r[i]), type = "response")
# report progress
cat(sprintf("dim: (%d, %d) - %3d/%d\n", dim(X)[2L], dim(X)[3L], i, dim(X)[1L]))
y.hat
}, mc.cores = getOption("mc.cores", max(1L, parallel::detectCores() - 1L))))
}
# perform preprocessed (reduced) and raw (not reduced) leave-one-out prediction
y.hat.3.4 <- loo.predict.tsir(preprocess(X, 3, 4), y)
y.hat.15.15 <- loo.predict.tsir(preprocess(X, 15, 15), y)
y.hat.20.30 <- loo.predict.tsir(preprocess(X, 20, 30), y)
y.hat <- loo.predict.tsir(X, y)
# classification performance measures table by leave-one-out cross-validation
(loo.cv <- apply(cbind(y.hat.3.4, y.hat.15.15, y.hat.20.30, y.hat), 2, function(y.pred) {
sapply(c("acc", "err", "fpr", "tpr", "fnr", "tnr", "auc", "auc.sd"),
function(FUN) { match.fun(FUN)(y, y.pred) })
}))
#> y.hat.3.4 y.hat.15.15 y.hat.20.30 y.hat
#> acc 0.79508197 0.78688525 0.7540984 0.67213115
#> err 0.20491803 0.21311475 0.2459016 0.32786885
#> fpr 0.33333333 0.37777778 0.3777778 0.53333333
#> tpr 0.87012987 0.88311688 0.8311688 0.79220779
#> fnr 0.12987013 0.11688312 0.1688312 0.20779221
#> tnr 0.66666667 0.62222222 0.6222222 0.46666667
#> auc 0.84646465 0.83376623 0.8040404 0.68946609
#> auc.sd 0.03596227 0.04092069 0.0446129 0.05196611

BIN
dataAnalysis/eeg/eeg_data.rds (Stored with Git LFS) Normal file

Binary file not shown.