add: special case for vector valued F in gmlm_tensor_normal()

fix: typos
This commit is contained in:
Daniel Kapla 2025-03-27 13:28:03 +01:00
parent 6cbb5029d4
commit 57eb279e6a
10 changed files with 108 additions and 260 deletions

View File

@ -12,4 +12,4 @@ License: GPL (>= 2)
Imports: Rcpp (>= 1.0.8)
LinkingTo: Rcpp
SystemRequirements: c++17
RoxygenNote: 7.2.0
RoxygenNote: 7.3.2

View File

@ -1,246 +1,127 @@
library(tensorPredictors)
suppressPackageStartupMessages(library(Rdimtools))
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_tsir-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
setwd("~/Work/tensorPredictors/sim/")
source("./sim_utils.R")
# Data set sample size in every simulation
sample.size <- 500L
# Nr. of per simulation replications
reps <- 10L
# number of observation/response axes (order of the tensors)
orders <- c(2L, 3L, 4L)
# auto correlation coefficient for the mode-wise auto scatter matrices `Omegas`
rhos <- seq(0, 0.8, by = 0.2)
# Set PRNG seed for reproducability
# Sequence 'T', 'S', 'I', 'R' in ASCII is 84, 83, 73, 82.
set.seed(84837382L, "Mersenne-Twister", "Inversion", "Rejection")
### Simulation configuration
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
signal.noise.ratios <- 2^(-3:4) # Signal to Noise Ratios (from 50/50 to very high)
dimX <- c(2, 3, 5) # predictor `X` dimension
dimF <- rep(2, length(dimX)) # "function" `F(y)` of responce `y` dimension
# setup true model parameters
eta1 <- 0
# rank 1 betas
betas <- Map(function(nr, nc) {
tcrossprod((-1)^seq_len(nr), (-1)^seq_len(nc))
}, dimX, dimF)
# True (minimal) reduction matrix
B.true <- Reduce(kronecker, rev(betas))[, 1L, drop = FALSE]
# GMLM second moment parameters (mode-wise precition matrices)
Omegas <- Map(function(pj) 0.5^abs(outer(1:pj, 1:pj, `-`)), dimX) # AR(0.5)
# True (minimal) Gamma (Projection Direction)
Gamma.true <- Reduce(kronecker, rev(Map(solve, Omegas, betas)))[, 1L, drop = FALSE]
# true (full) covariance matrix
covX.true <- Reduce(kronecker, rev(Map(solve, Omegas)))
# define projections onto rank 1 matrices for betas
proj.betas <- Map(.projRank, rep(1L, length(betas)))
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim-tsir-%Y%m%dT%H%M")
# data sampling routine
sample.data <- function(sample.size, betas, Omegas) {
dimF <- mapply(ncol, betas)
sample.data <- function(sample.size, eta1, betas, Omegas, snr) {
# responce is a standard normal variable
y <- sort(rnorm(sample.size))
y <- rnorm(sample.size)
# F(y) is a tensor of monomials
y.pow <- Reduce(function(a, b) outer(a, b, `+`), Map(seq, 0L, len = dimF))
F <- t(outer(y, as.vector(y.pow), `^`)) / as.vector(factorial(y.pow))
F <- t(outer(y, as.vector(y.pow), `^`))
dim(F) <- c(dimF, sample.size)
matplot(mat(F, length(dim(F))), type = "l")
abline(h = 0, lty = "dashed")
matplot(y, scale(mat(F, length(dim(F))), scale = FALSE), type = "l")
abline(h = 0, lty = "dashed")
# sample predictors from tensor normal X | Y = y (last axis is sample axis)
sample.axis <- length(betas) + 1L
Sigmas <- Map(solve, Omegas)
mu_y <- mlm(F, Map(`%*%`, Sigmas, betas))
X <- mu_y + rtensornorm(sample.size, 0, Sigmas, sample.axis)
Deltas <- Map(solve, Omegas) # normal covariances
mu_y <- mlm(mlm(F, betas) + as.vector(eta1), Deltas) # conditional mean
noise <- rtensornorm(sample.size, 0, Deltas, sample.axis) # error term
# scale noise to given signal to noise ratio
snr.est <- sd(mu_y) / sd(noise)
noise <- (snr.est / snr) * noise
X <- mu_y + noise # responses X
# Make `y` into a `Y` tensor with variable axis all of dim 1
Y <- array(y, dim = c(rep(1L, length(dimF)), sample.size))
list(X = X, F = F, Y = Y, sample.axis = sample.axis)
list(X = X, F = F, y = y, sample.axis = sample.axis)
}
# Create a CSV logger to write simulation results to
# Create a CSV logger to save simulation results
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("rho", "order", "sample.size", "rep", "beta.version", outer(
"dist.subspace", c("gmlm", "gmlm.1d", "tsir", "sir"),
paste, sep = "."
))
header = c(
"snr", "sample.size", "rep",
"dist.subspace.gmlm", "dist.subspace.tsir", "dist.subspace.partial", "dist.subspace.gamma"
)
)
for (order in orders) {
# setup problem dimensions given the tensor order
dimX <- rep(2L, order)
dimF <- rep(2L, order)
# different Signal to Noise Ratios
for (snr in signal.noise.ratios) {
# as well as the projections onto rank 1 matrices
proj.betas <- Map(.projRank, rep(1L, order))
# simulation for multiple data set sizes
for (sample.size in sample.sizes) {
for (rho in rhos) {
# Scatter matrices (Omegas) given as autoregression structure `AR(rho)`
Omegas <- Map(function(p) rho^abs(outer(1:p, 1:p, `-`)), dimX)
# Version 1 betas (reductions)
beta.version <- 1L
betas <- Map(function(nr, nc) {
`[<-`(matrix(0, nr, nc), 1, , 1)
}, dimX, dimF)
B.true <- Reduce(kronecker, rev(betas))
# `(B.min %*% vec(X)) | Y = y` proportional to `(1 + y)^order`)
B.min.true <- B.true[, 1L, drop = FALSE]
# Version 1: repeated simulations
# simulation replications
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, Y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
# Fit models to provided data
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
fit.gmlm.y <- gmlm_tensor_normal(X, Y, sample.axis = sample.axis)
fit.tsir <- TSIR(X, drop(Y), d = rep(1L, order), sample.axis = sample.axis)
fit.sir <- do.sir(mat(X, sample.axis), drop(Y), ndim = 1L)
# sample a data set
c(X, F, y, sample.axis) %<-% sample.data(sample.size, eta1, betas, Omegas, snr)
# Extract minimal reduction matrices from fitted models
B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE]
B.gmlm.y <- Reduce(kronecker, rev(fit.gmlm.y$betas))
B.tsir <- Reduce(kronecker, rev(fit.tsir))
B.sir <- fit.sir$projection
# call GMLM and TSIR
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
fit.tsir <- TSIR(X, y, c(1L, 1L, 1L), sample.axis = sample.axis)
# Compute estimation to true minimal `B` distance
dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE)
dist.subspace.gmlm.y <- dist.subspace(B.min.true, B.gmlm.y, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE)
dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE)
# GMLM, TSIR reduction estimates and TSIR (internal) projections
B.gmlm <- Reduce(kronecker, Map(function(beta) qr.Q(qr(beta))[, 1L, drop = FALSE], rev(fit.gmlm$betas)))
B.tsir <- Reduce(kronecker, rev(fit.tsir))
Gamma <- Reduce(kronecker, rev(attr(fit.tsir, "Gammas")))
# Subspace distances to true minimal reduction
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace.partial <- dist.subspace(B.true, solve(covX.true, Gamma), normalize = TRUE)
dist.subspace.gamma <- dist.subspace(Gamma.true, Gamma, normalize = TRUE)
# Write to simulation log file (CSV file)
logger()
# and print progress
cat(sprintf("order %d, rho %.2f, version %d: rep: %d/%d\n",
order, rho, beta.version, rep, reps))
}
# Version 2 betas (reductions)
beta.version <- 2L
betas <- Map(function(nr, nc) {
tcrossprod((-1)^seq_len(nr), (-1)^seq_len(nc))
}, dimX, dimF)
B.true <- Reduce(kronecker, rev(betas))
# `(B.min %*% vec(X)) | Y = y` proportional to `(1 - y)^order`)
B.min.true <- B.true[, 1L, drop = FALSE]
# Version 2: repeated simulations (identical to Version 1)
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, Y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
# Fit models to provided data
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
fit.gmlm.y <- gmlm_tensor_normal(X, Y, sample.axis = sample.axis)
fit.tsir <- TSIR(X, drop(Y), d = rep(1L, order), sample.axis = sample.axis)
fit.sir <- do.sir(mat(X, sample.axis), drop(Y), ndim = 1L)
# Extract minimal reduction matrices from fitted models
B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE]
B.gmlm.y <- Reduce(kronecker, rev(fit.gmlm.y$betas))
B.tsir <- Reduce(kronecker, rev(fit.tsir))
B.sir <- fit.sir$projection
# Compute estimation to true minimal `B` distance
dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE)
dist.subspace.gmlm.y <- dist.subspace(B.min.true, B.gmlm.y, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE)
dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE)
# Write to simulation log file (CSV file)
logger()
# and print progress
cat(sprintf("order %d, rho %.2f, version %d: rep: %d/%d\n",
order, rho, beta.version, rep, reps))
cat(sprintf("SNR %.2f, sample size %d: rep: %d/%d\n", snr, sample.size, rep, reps))
}
}
}
### read simulation results and generate plots
### read simulation results generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
# Read simulation results back from log file
# Read siulation results from log file
sim <- read.csv(log.file)
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# reset the correlation configuration parameter
signal.noise.ratios <- sort(unique(sim$snr))
# aggregate results
grouping <- sim[c("rho", "order", "beta.version")]
sim.dist <- sim[startsWith(names(sim), "dist")]
aggr <- aggregate(sim.dist, grouping, mean)
# build plot layout for every `snr` param
ncols <- ceiling(sqrt(length(signal.noise.ratios)))
nrows <- ceiling(length(signal.noise.ratios) / ncols)
par(mfrow = c(nrows, ncols))
# reset (possible lost) config
orders <- sort(unique(aggr$order))
rhos <- sort(unique(aggr$rho))
# new grouping for the aggregates
layout(rbind(
matrix(seq_len(2 * length(orders)), ncol = 2),
2 * length(orders) + 1
), heights = c(rep(6L, length(orders)), 1L))
col.methods <- c(
gmlm = "#000000",
gmlm.y = "#FF0000",
tsir = "#009E73",
sir = "#999999"
)
for (group in split(aggr, aggr[c("order", "beta.version")])) {
order <- group$order[[1]]
beta.version <- group$beta.version[[1]]
rho <- group$rho
plot(range(rho), 0:1, main = sprintf("V%d, order %d", beta.version, order),
type = "n", bty = "n", axes = FALSE, xlab = expression(rho), ylab = "Subspace Distance")
axis(1, at = rho)
axis(2, at = seq(0, 1, by = 0.2))
with(group, {
lines(rho, dist.subspace.gmlm, col = col.methods["gmlm"], lwd = 3, type = "b", pch = 16)
lines(rho, dist.subspace.gmlm.y, col = col.methods["gmlm.y"], lwd = 3, type = "b", pch = 16)
lines(rho, dist.subspace.tsir, col = col.methods["tsir"], lwd = 2, type = "b", pch = 16)
lines(rho, dist.subspace.sir, col = col.methods["sir"], lwd = 2, type = "b", pch = 16)
})
if (order == 3L && beta.version == 2L) {
abline(v = 0.5, lty = "dotted", col = "black")
abline(h = group$dist.subspace.tsir[which(rho == 0.5)],
lty = "dotted", col = "black")
}
# One plot for every Singal to Noise Ratio
for (.snr in signal.noise.ratios) {
plot.sim(subset(sim, snr == .snr), "dist.subspace",
main = sprintf("Signal to Noise Ratio: %.3f", .snr), xlab = "Sample Size", ylab = "Subspace Distance",
cols = c(gmlm = "black", tsir = "#009E73", partial = "orange", gamma = "skyblue")
)
}
methods <- c("GMLM", "GMLM.y", "TSIR", "SIR")
restor.par <- par(
fig = c(0, 1, 0, 1),
oma = c(0, 0, 0, 0),
mar = c(1, 0, 0, 0),
new = TRUE
)
plot(0, type = "n", bty = "n", axes = FALSE, xlab = "", ylab = "")
legend("bottom", col = col.methods[tolower(methods)], legend = methods,
horiz = TRUE, lty = 1, bty = "n", lwd = c(3, 2, 2), pch = 16)
par(restor.par)
### Version 1
# 2'nd order
# 1 + 2 y + y^2
# (1 + y)^2
# 3'rd order
# 1 + 3 y + 3 y^2 + y^4
# (1 + y)^3
# 4'th order
# 1 + 4 y + 6 y^2 + 4 y^3 + y^4
# (1 + y)^4
### Version 2
# 2'nd order
# 1 - 2 y + y^2
# (1 - y)^2 = 1 - 2 y + y^2
# 3'rd order
# 1 - 3 y + 3 y^2 - y^3
# -(y - 1)^3
# 4'th order
# 1 - 4 y + 6 y^2 - 4 y^3 + y^4
# (y - 1)^4

View File

@ -1,4 +1,6 @@
library(tensorPredictors)
library(rTensor)
# library(RGCCA)
### Load modified version which _does not_ create a clusster in case of
### `n_cores == 1` allowing huge speed improvements! (at least on Ubuntu 22.04 LTS)

View File

@ -25,17 +25,15 @@ dimX <- c(2, 3, 5) # predictor `X` dimension
dimF <- rep(2, length(dimX)) # "function" `F(y)` of responce `y` dimension
# setup true model parameters (rank 1 betas)
betas <- list(
`[<-`(matrix(0, dimX[1], dimF[1]), 1, , c(1, 1)),
`[<-`(matrix(0, dimX[2], dimF[2]), 2, , c(1, 0)),
`[<-`(matrix(0, dimX[3], dimF[3]), 3, , c(1, 2))
)
betas <- Map(function(nr, nc) {
tcrossprod((-1)^seq_len(nr), (-1)^seq_len(nc))
}, dimX, dimF)
# invisible(Map(print.table, betas, zero.print = "."))
Omegas <- Map(function(pj) 0.5^abs(outer(1:pj, 1:pj, `-`)), dimX) # AR(0.5)
eta1 <- 0
# True (full) reduction matrix to compair against
B.true <- as.matrix(as.numeric(15 == (1:30)))
B.true <- Reduce(kronecker, rev(betas))[, 1L, drop = FALSE]
# define projections onto rank 1 matrices for betas
proj.betas <- Map(.projRank, rep(1L, length(betas)))
@ -70,46 +68,6 @@ logger <- CSV.logger(
))
)
# # true reduction (1D, select first component)
# B.true <- as.matrix(as.numeric(1 == (1:30)))
# B.true <- Reduce(`%x%`, rev(betas)) #[, 1L, drop = FALSE]
# print.table(B.true, zero.print = ".")
# print.table(Reduce(kronecker, rev(betas)), zero.print = ".")
# mu1 <- function(y) 1 + 3 * y + y^2
# matX <- mat(X, 1:3)
# x1 <- matX[1, ]
# x2 <- matX[2, ]
# plot(mu1(y), x1, col = cut(y, 10L))
# plot(y, x1, col = cut(y, 10L))
# plot(mu1(y), x2, col = cut(y, 10L))
# plot(y, matX[1, ], col = cut(y, 10L))
# plot(y, matX[10, ], col = cut(y, 10L))
# c(X, F, y, sample.axis) %<-% sample.data(sample.size, eta1, betas, Omegas)
# colnames(B.true) <- c("1", "y", "y", "y^2", "y", "y^2", "y^2", "y^3")
# mu_y <- function(y) {
# B.min <- cbind(
# B.true[, 1],
# rowSums(B.true[, c(2:3, 5)]),
# rowSums(B.true[, c(4, 6:7)]),
# B.true[, 8]
# )
# B.min %*% rbind(1, y, y^2, y^3)
# }
# plot((mat(X, 4) %*% B.min)[, 2], y)
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
@ -139,7 +97,7 @@ for (sample.size in sample.sizes) {
F1 <- cbind(y, y^2, y^3)
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X1, F1), # `drop` removes 1D axis
list(X1, F1),
quiet = TRUE,
scheme = "factorial",
ncomp = c(1L, 1L)

View File

@ -37,7 +37,7 @@ betas <- Map(diag, 1, dimX, dimF)
# Omegas <- Map(function(dim) `diag<-`(matrix(1, dim, dim), 0), dimX)
Omegas <- list(
`diag<-`(matrix(0.5, dimX[1], dimX[1]), 0),
diag(dimX[2])
matrix(c(0, 1, 0, 1, 0, 1, 0, 1, 0), 3, 3)
)
# compute true (full) model parameters to compair estimates against

View File

@ -142,13 +142,11 @@ names(col.methods) <- methods
# Comparison plot of one measure for a simulation
plot.sim <- function(sim, measure.name, ..., ylim = c(0, 1)) {
plot.sim <- function(sim, measure.name, ..., ylim = c(0, 1), cols = col.methods) {
par.default <- par(pch = 16, bty = "n", lty = "solid", lwd = 1.5)
# # Set colors for every method
# methods <- c("gmlm", "pca", "hopca", "tsir", "mgcca", "lpca", "clpca", "tnormal")
# col.methods <- palette.colors(n = length(methods), palette = "Okabe-Ito", recycle = FALSE)
# names(col.methods) <- methods
# extract method names from color specification
methods <- names(cols)
# Remain sample size grouping variable to avoid conflicts
aggr.mean <- aggregate(sim, list(sampleSize = sim$sample.size), mean)
@ -166,7 +164,7 @@ plot.sim <- function(sim, measure.name, ..., ylim = c(0, 1)) {
min <- aggr.min[aggr.sd$sampleSize == sampleSize, dist.name]
max <- aggr.max[aggr.sd$sampleSize == sampleSize, dist.name]
method <- tail(strsplit(dist.name, ".", fixed = TRUE)[[1]], 1)
col <- col.methods[method]
col <- cols[method]
lines(sampleSize, mean, type = "o", col = col, lty = 1, lwd = 2 + (method == "gmlm"))
lines(sampleSize, mean + sd, col = col, lty = 2, lwd = 0.8)
lines(sampleSize, mean - sd, col = col, lty = 2, lwd = 0.8)
@ -175,7 +173,7 @@ plot.sim <- function(sim, measure.name, ..., ylim = c(0, 1)) {
lines(sampleSize, max, col = col, lty = 3, lwd = 0.6)
}
legend("topright", col = col.methods, lty = 1, legend = names(col.methods),
legend("topright", col = cols, lty = 1, legend = names(cols),
bty = "n", lwd = par("lwd"), pch = par("pch"))
})

View File

@ -7,6 +7,11 @@ gmlm_tensor_normal <- function(X, F, sample.axis = length(dim(X)),
max.iter = 100L, proj.betas = NULL, proj.Omegas = NULL, logger = NULL,
cond.threshold = 25, eps = 1e-6
) {
# Special case for `F` being vector valued, add dims of size 1
if (is.null(dim(F))) {
dim(F) <- ifelse(seq_along(dim(X)) == sample.axis, length(F), 1L)
}
# rearrange `X`, `F` such that the last axis enumerates observations
if (!missing(sample.axis)) {
axis.perm <- c(seq_along(dim(X))[-sample.axis], sample.axis)

View File

@ -35,7 +35,7 @@ mcov <- function(X, sample.axis = length(dim(X)), center = TRUE) {
X <- X - c(rowMeans(X, dims = r))
}
# estimes (unscaled) covariances for each mode
# unscaled covariances for each mode
Sigmas <- .mapply(mcrossprod, list(mode = seq_len(r)), MoreArgs = list(X))
# scale by per mode "sample" size
Sigmas <- .mapply(`*`, list(Sigmas, p / prod(dim(X))), NULL)

View File

@ -20,6 +20,9 @@ extern SEXP R_mcrossprod(SEXP A, SEXP B, SEXP mode);
/* Symmetric Tensor Mode Crossproduct `A_(m) A_(m)^T` */
extern SEXP R_mcrossprod_sym(SEXP A, SEXP mode);
/* Merge matrix-matrix multiplication over 3rd axis of 3D arrays */
extern SEXP R_merge_matmul(SEXP A, SEXP B);
// /* Higher Order PCA */
// extern SEXP hopca(SEXP X);
@ -73,6 +76,7 @@ static const R_CallMethodDef CallEntries[] = {
{"C_mtvk", (DL_FUNC) &mtvk, 2},
{"C_mcrossprod", (DL_FUNC) &R_mcrossprod, 3},
{"C_mcrossprod_sym", (DL_FUNC) &R_mcrossprod_sym, 2},
{"C_merge_matmul", (DL_FUNC) &R_merge_matmul, 2},
{"C_svd", (DL_FUNC) &R_svd, 1},
{"C_solve", (DL_FUNC) &R_solve, 2},
{"C_det", (DL_FUNC) &R_det, 1},

View File

@ -419,7 +419,7 @@ extern SEXP R_ising_m2(
} else {
// Exact method (ignore other arguments), only validate dimension
if (25 < dim) {
Rf_error("Dimension '%d' too big for exact method (max 24)", dim);
Rf_error("Dimension '%ld' too big for exact method (max 24)", dim);
}
// and call the exact method