add: tensor normal simulations

This commit is contained in:
Daniel Kapla 2023-11-21 12:25:35 +01:00
parent 399f878fbb
commit 39555ec1fa
8 changed files with 1346 additions and 0 deletions

9
.gitignore vendored
View File

@ -108,8 +108,17 @@ simulations/
!**/LaTeX/*.bib !**/LaTeX/*.bib
**/LaTeX/*-blx.bib **/LaTeX/*-blx.bib
# Include subfolders for images and plots
!**/LaTeX/plots/
**/LaTeX/plots/*
!**/LaTeX/plots/*.tex
!**/LaTeX/images/
**/LaTeX/images/*
!**/LaTeX/images/*.tex
mlda_analysis/ mlda_analysis/
References/ References/
dataAnalysis/
*.csv *.csv
*.csv.log *.csv.log

148
sim/sim_1a_normal.R Normal file
View File

@ -0,0 +1,148 @@
library(tensorPredictors)
# library(RGCCA)
### Load modified version which _does not_ create a clusster in case of
### `n_cores == 1` allowing huge speed improvements! (at least on Ubuntu 22.04 LTS)
### Moreover, it is compatible with `Rscript`
devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_1a_normal-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# Set PRNG seed for reproducability
# Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
# which is `R`s way if indicating an integer.
set.seed(0x1aL, "Mersenne-Twister", "Inversion", "Rejection")
### Simulation configuration
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
dimX <- c(2, 3, 5) # predictor `X` dimension
dimF <- rep(1, length(dimX)) # "function" `F(y)` of responce `y` dimension
# setup true model parameters
betas <- Map(diag, 1, dimX, dimF)
Omegas <- Map(function(pj) 0.5^abs(outer(1:pj, 1:pj, `-`)), dimX) # AR(0.5)
eta1 <- 0
# data sampling routine
sample.data <- function(sample.size, eta1, betas, Omegas) {
# responce is a standard normal variable
y <- rnorm(sample.size)
# F(y) is identical to y, except its a tensor (last axis is sample axis)
F <- array(y, dim = c(mapply(ncol, betas), sample.size))
# sample predictors from tensor normal X | Y = y (last axis is sample axis)
sample.axis <- length(betas) + 1L
Deltas <- Map(solve, Omegas) # normal covariances
mu_y <- mlm(mlm(F, betas) + as.vector(eta1), Deltas) # conditional mean
X <- mu_y + rtensornorm(sample.size, 0, Deltas, sample.axis) # responses X
list(X = X, F = F, y = y, sample.axis = sample.axis)
}
# Create a CSV logger to write simulation results to
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("sample.size", "rep", outer(
c("time", "dist.subspace"), # measures
c("gmlm", "pca", "hopca", "tsir", "mgcca", "hocca"), # methods
paste, sep = "."
), "dist.subspace.init")
)
# compute true (full) model parameters to compair estimates against
B.true <- Reduce(`%x%`, rev(betas))
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, eta1, betas, Omegas)
# fit different models
# Wrapped in try-catch clock to ensure the simulation continues,
# if an error occures continue with nest resplication and log an error message
tryCatch({
time.gmlm <- system.time(
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis)
)["user.self"]
time.pca <- system.time(
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
)["user.self"]
time.hopca <- system.time(
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
)["user.self"]
time.tsir <- system.time(
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
)["user.self"]
# `mgcca` expects the first axis to be the sample axis
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
F1 <- aperm(F, c(sample.axis, seq_along(dim(X))[-sample.axis]))
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X1, drop(F1)), # `drop` removes 1D axis (exception without)
quiet = TRUE,
scheme = "factorial",
ncomp = rep(prod(dimF), 2),
ranks = rep(prod(dimF), 2)
)
)["user.self"]
time.hocca <- system.time(
fit.hocca <- HOCCA(X, F, sample.axis = sample.size)
)
}, error = function(ex) {
print(ex)
})
# Compute true reduction matrix
B.gmlm <- with(fit.gmlm, Reduce(`%x%`, rev(betas)))
B.init <- Reduce(`%x%`, rev(fit.gmlm$betas.init))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
B.hocca <- Reduce(`%x%`, rev(fit.hocca$dirsX))
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
# `P_A = A (A' A)^-1 A'` and the normalization means that with
# respect to the dimensions of `A, B` the subspace distance is in the
# range `[0, 1]`.
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.init <- dist.subspace(B.true, B.init, normalize = TRUE)
dist.subspace.pca <- dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace.mgcca <- dist.subspace(B.true, B.mgcca, normalize = TRUE)
dist.subspace.hocca <- dist.subspace(B.true, B.hocca, normalize = TRUE)
# Projection Distances: Spectral norm (2-norm) `|| P_A - P_B ||_2`.
# Equiv to Subspace distance in 1D reduction case
# Call CSV logger writing results to file
logger()
# print progress
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d\n",
sample.size, which(sample.size == sample.sizes),
length(sample.sizes), rep, reps))
}
}
### read simulation results generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
sim <- read.csv(log.file)
plot.sim(sim, "dist.subspace", main = "Subspace Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "time", main = "Runtime",
xlab = "Sample Size", ylab = "Time [s]", ylim = c(0, 18))

149
sim/sim_1b_normal.R Normal file
View File

@ -0,0 +1,149 @@
library(tensorPredictors)
# library(RGCCA)
### Load modified version which _does not_ create a clusster in case of
### `n_cores == 1` allowing huge speed improvements! (at least on Ubuntu 22.04 LTS)
### Moreover, it is compatible with `Rscript`
### Also added `Encoding: UTF-8` in `DESCRIPTION`
devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_1b_normal-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# Set PRNG seed for reproducability
# Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
# which is `R`s way if indicating an integer.
set.seed(0x1bL, "Mersenne-Twister", "Inversion", "Rejection")
### Simulation configuration
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
dimX <- c(2, 3, 5) # predictor `X` dimension
dimF <- rep(2, length(dimX)) # "function" `F(y)` of responce `y` dimension
# setup true model parameters
betas <- Map(diag, 1, dimX, dimF)
Omegas <- Map(function(pj) 0.5^abs(outer(1:pj, 1:pj, `-`)), dimX) # AR(0.5)
eta1 <- 0
# data sampling routine
sample.data <- function(sample.size, eta1, betas, Omegas) {
# responce is a standard normal variable
y <- rnorm(sample.size)
# F(y) is a tensor of monomials
F <- sapply(y, function(yi) Reduce(outer, Map(`^`, yi, Map(seq, 0, len = dimF))))
dim(F) <- c(dimF, sample.size)
# sample predictors from tensor normal X | Y = y (last axis is sample axis)
sample.axis <- length(betas) + 1L
Deltas <- Map(solve, Omegas) # normal covariances
mu_y <- mlm(mlm(F, betas) + as.vector(eta1), Deltas) # conditional mean
X <- mu_y + rtensornorm(sample.size, 0, Deltas, sample.axis) # response
list(X = X, F = F, y = y, sample.axis = sample.axis)
}
# Create a CSV logger to write simulation results to
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("sample.size", "rep", outer(
c("time", "dist.subspace", "dist.projection"), # measures
c("gmlm", "pca", "hopca", "tsir", "mgcca"), # methods
paste, sep = "."
))
)
# compute true (full) model parameters to compair estimates against
B.true <- Reduce(`%x%`, rev(betas))
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, eta1, betas, Omegas)
# fit different models
# Wrapped in try-catch clock to ensure the simulation continues,
# if an error occures continue with nest resplication and log an error message
tryCatch({
time.gmlm <- system.time(
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis)
)["user.self"]
time.pca <- system.time(
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
)["user.self"]
time.hopca <- system.time(
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
)["user.self"]
time.tsir <- system.time(
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
)["user.self"]
# `mgcca` expects the first axis to be the sample axis
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
F1 <- aperm(F, c(sample.axis, seq_along(dim(X))[-sample.axis]))
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X1, drop(F1)), # `drop` removes 1D axis
quiet = TRUE,
scheme = "factorial",
ncomp = rep(prod(dimF), 2)
)
)["user.self"]
}, error = function(ex) {
print(ex)
})
# Compute true reduction matrix
B.gmlm <- with(fit.gmlm, Reduce(`%x%`, rev(betas)))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
# `P_A = A (A' A)^-1 A'` and the normalization means that with
# respect to the dimensions of `A, B` the subspace distance is in the
# range `[0, 1]`.
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.pca <- dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace.mgcca <- dist.subspace(B.true, B.mgcca, normalize = TRUE)
# Projection Distances: Spectral norm (2-norm) `|| P_A - P_B ||_2`.
dist.projection.gmlm <- dist.projection(B.true, B.gmlm)
dist.projection.pca <- dist.projection(B.true, B.pca)
dist.projection.hopca <- dist.projection(B.true, B.hopca)
dist.projection.tsir <- dist.projection(B.true, B.tsir)
dist.projection.mgcca <- dist.projection(B.true, B.mgcca)
# Call CSV logger writing results to file
logger()
# print progress
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d\n",
sample.size, which(sample.size == sample.sizes),
length(sample.sizes), rep, reps))
}
}
### read simulation results generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
sim <- read.csv(log.file)
plot.sim(sim, "dist.subspace", main = "Subspace Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "dist.projection", main = "Projection Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "time", main = "Runtime",
xlab = "Sample Size", ylab = "Time [s]", ylim = c(0, 18))

185
sim/sim_1b_normal_2.R Normal file
View File

@ -0,0 +1,185 @@
library(tensorPredictors)
# library(RGCCA)
### Load modified version which _does not_ create a clusster in case of
### `n_cores == 1` allowing huge speed improvements! (at least on Ubuntu 22.04 LTS)
### Moreover, it is compatible with `Rscript`
### Also added `Encoding: UTF-8` in `DESCRIPTION`
devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_1b_normal-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# Set PRNG seed for reproducability
# Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
# which is `R`s way if indicating an integer.
set.seed(0x1bL, "Mersenne-Twister", "Inversion", "Rejection")
### Simulation configuration
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
validation.sizes <- 10000
dimX <- c(2, 3, 5) # predictor `X` dimension
dimF <- rep(2, length(dimX)) # "function" `F(y)` of responce `y` dimension
# setup true model parameters
betas <- Map(diag, 1, dimX, dimF)
Omegas <- Map(function(pj) 0.5^abs(outer(1:pj, 1:pj, `-`)), dimX) # AR(0.5)
eta1 <- 0
# data sampling routine
sample.data <- function(sample.size, eta1, betas, Omegas) {
# responce is a standard normal variable
y <- rnorm(sample.size)
# F(y) is a tensor of monomials
F <- sapply(y, function(yi) Reduce(outer, Map(`^`, yi, Map(seq, 0, len = dimF))))
dim(F) <- c(dimF, sample.size)
# sample predictors from tensor normal X | Y = y (last axis is sample axis)
sample.axis <- length(betas) + 1L
Deltas <- Map(solve, Omegas) # normal covariances
mu_y <- mlm(mlm(F, betas) + as.vector(eta1), Deltas) # conditional mean
X <- mu_y + rtensornorm(sample.size, 0, Deltas, sample.axis) # response
list(X = X, F = F, y = y, sample.axis = sample.axis)
}
# Create a CSV logger to write simulation results to
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("sample.size", "rep", outer(
c("dist.subspace", "dist.projection"), # measures
c("gmlm", "tsir", "hopca"), # methods
paste, sep = "."
), outer(
c("time", "dist.min.subspace", "dist.min.projection", "reconst.error"), # measures
c("gmlm", "pca", "hopca", "tsir", "mgcca"), # methods
paste, sep = "."
))
)
# compute true (full) model parameters to compair estimates against
B.true <- Reduce(`%x%`, rev(betas))
minimal <- function(B) { cbind(
"1" = B[, 1],
"y" = rowSums(B[, c(2, 3, 5)]),
"y^2" = rowSums(B[, c(4, 6, 7)]),
"y^3" = B[, 8]
) }
B.min.true <- minimal(B.true)
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, eta1, betas, Omegas)
# fit different models
# Wrapped in try-catch clock to ensure the simulation continues,
# if an error occures continue with nest resplication and log an error message
tryCatch({
time.gmlm <- system.time(
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis)
)["user.self"]
time.pca <- system.time(
fit.pca <- prcomp(mat(X, sample.axis), rank. = 4)
)["user.self"]
time.hopca <- system.time(
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
)["user.self"]
time.tsir <- system.time(
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
)["user.self"]
# `mgcca` expects the first axis to be the sample axis
X.perm <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
F.min <- mat(F, sample.axis)[, c(2, 4, 8)]
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X.perm, F.min), # `drop` removes 1D axis
quiet = TRUE,
scheme = "factorial",
ncomp = c(4, 1)
)
)["user.self"]
}, error = function(ex) {
print(ex)
})
# Compute true reduction matrix
B.gmlm <- with(fit.gmlm, Reduce(`%x%`, rev(betas)))
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
# and minimal true reductions if not already minimal
B.min.gmlm <- minimal(B.gmlm)
B.min.pca <- fit.pca$rotation
B.min.hopca <- B.hopca[, 1:4]
B.min.tsir <- La.svd(B.tsir, 4L, 0L)$u
B.min.mgcca <- fit.mgcca$astar[[1]]
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
# `P_A = A (A' A)^-1 A'` and the normalization means that with
# respect to the dimensions of `A, B` the subspace distance is in the
# range `[0, 1]`.
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.min.subspace.gmlm <- dist.subspace(B.min.true, B.min.gmlm, normalize = TRUE)
dist.min.subspace.pca <- dist.subspace(B.min.true, B.min.pca, normalize = TRUE)
dist.min.subspace.hopca <- dist.subspace(B.min.true, B.min.hopca, normalize = TRUE)
dist.min.subspace.tsir <- dist.subspace(B.min.true, B.min.tsir, normalize = TRUE)
dist.min.subspace.mgcca <- dist.subspace(B.min.true, B.min.mgcca, normalize = TRUE)
# Projection Distances: Spectral norm (2-norm) `|| P_A - P_B ||_2`.
dist.projection.gmlm <- dist.projection(B.true, B.gmlm)
dist.projection.hopca <- dist.projection(B.true, B.hopca)
dist.projection.tsir <- dist.projection(B.true, B.tsir)
dist.min.projection.gmlm <- dist.projection(B.min.true, B.min.gmlm)
dist.min.projection.pca <- dist.projection(B.min.true, B.min.pca)
dist.min.projection.hopca <- dist.projection(B.min.true, B.min.hopca)
dist.min.projection.tsir <- dist.projection(B.min.true, B.min.tsir)
dist.min.projection.mgcca <- dist.projection(B.min.true, B.min.mgcca)
# # Reconstruction error (MSE) of y given X with a new sample
# c(X, F, y, sample.axis) %<-% sample.data(validation.sizes, eta1, betas, Omegas)
# y.gmlm <- rowMeans(mat(mlm(X, fit.gmlm$betas), sample.axis)[, c(2, 3, 5)])
# Call CSV logger writing results to file
logger()
# print progress
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d\n",
sample.size, which(sample.size == sample.sizes),
length(sample.sizes), rep, reps))
}
}
### read simulation results and generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
sim <- read.csv(log.file)
plot.sim(sim, "dist.subspace", main = "Full Subspace Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "dist.min.subspace", main = "Min Subspace Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "dist.projection", main = "Full Projection Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "dist.min.projection", main = "Min Projection Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "time", main = "Runtime",
xlab = "Sample Size", ylab = "Time")

152
sim/sim_1c_normal.R Normal file
View File

@ -0,0 +1,152 @@
library(tensorPredictors)
# library(RGCCA)
### Load modified version which _does not_ create a clusster in case of
### `n_cores == 1` allowing huge speed improvements! (at least on Ubuntu 22.04 LTS)
### Moreover, it is compatible with `Rscript`
### Also added `Encoding: UTF-8` in `DESCRIPTION`
devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_1c_normal-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# Set PRNG seed for reproducability
# Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
# which is `R`s way if indicating an integer.
set.seed(0x1cL, "Mersenne-Twister", "Inversion", "Rejection")
### Simulation configuration
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
dimX <- c(2, 3, 5) # predictor `X` dimension
dimF <- rep(2, length(dimX)) # "function" `F(y)` of responce `y` dimension
# setup true model parameters (rank 1 betas)
betas <- Map(function(nr, nc) {
tcrossprod((-1)^seq_len(nr), (-1)^seq_len(nc))
}, dimX, dimF)
Omegas <- Map(function(pj) 0.5^abs(outer(1:pj, 1:pj, `-`)), dimX) # AR(0.5)
eta1 <- 0
# define projections onto rank 1 matrices for betas
proj.betas <- Map(.projRank, rep(1L, length(betas)))
# data sampling routine
sample.data <- function(sample.size, eta1, betas, Omegas) {
# responce is a standard normal variable
y <- rnorm(sample.size)
# F(y) is a tensor of monomials
y.pow <- Reduce(function(a, b) outer(a, b, `+`), Map(seq, 0L, len = dimF))
F <- t(outer(y, as.vector(y.pow), `^`))
dim(F) <- c(dimF, sample.size)
# sample predictors from tensor normal X | Y = y (last axis is sample axis)
sample.axis <- length(betas) + 1L
Deltas <- Map(solve, Omegas) # normal covariances
mu_y <- mlm(mlm(F, betas) + as.vector(eta1), Deltas) # conditional mean
X <- mu_y + rtensornorm(sample.size, 0, Deltas, sample.axis) # responses X
list(X = X, F = F, y = y, sample.axis = sample.axis)
}
# Create a CSV logger to write simulation results to
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("sample.size", "rep", outer(
c("time", "dist.subspace"), # measures
c("gmlm", "pca", "hopca", "tsir", "mgcca"), # methods
paste, sep = "."
))
)
# compute true (full) model parameters to compair estimates against
B.true <- Reduce(`%x%`, rev(betas))[, 1L, drop = FALSE]
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, eta1, betas, Omegas)
# fit different models
# Wrapped in try-catch clock to ensure the simulation continues,
# if an error occures continue with nest resplication and log an error message
tryCatch({
time.gmlm <- system.time(
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis,
proj.betas = proj.betas)
)["user.self"]
time.pca <- system.time(
fit.pca <- prcomp(mat(X, sample.axis), rank. = 1L)
)["user.self"]
time.hopca <- system.time(
fit.hopca <- HOPCA(X, npc = c(1L, 1L, 1L), sample.axis = sample.axis)
)["user.self"]
time.tsir <- system.time(
fit.tsir <- TSIR(X, y, d = c(1L, 1L, 1L), sample.axis = sample.axis)
)["user.self"]
# `mgcca` expects the first axis to be the sample axis
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
F1 <- cbind(y, y^2, y^3)
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X1, F1), # `drop` removes 1D axis
quiet = TRUE,
scheme = "factorial",
ncomp = c(1L, 1L)
)
)["user.self"]
}, error = function(ex) {
print(ex)
})
# Compute true reduction matrix
B.gmlm <- Reduce(kronecker, Map(
function(beta) qr.Q(qr(beta))[, 1L, drop = FALSE],
rev(fit.gmlm$betas)))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
# `P_A = A (A' A)^-1 A'` and the normalization means that with
# respect to the dimensions of `A, B` the subspace distance is in the
# range `[0, 1]`.
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.pca <- dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace.mgcca <- dist.subspace(B.true, B.mgcca, normalize = TRUE)
# No projection distacne as in this case the Subspace and Projection
# distances are identical
# Call CSV logger writing results to file
logger()
# print progress
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d\n",
sample.size, which(sample.size == sample.sizes),
length(sample.sizes), rep, reps))
}
}
### read simulation results generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
sim <- read.csv(log.file)
plot.sim(sim, "dist.subspace", main = "Subspace Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "time", main = "Runtime",
xlab = "Sample Size", ylab = "Time [s]", ylim = c(0, 18))
# aggr <- aggregate(sim[, names(sim) != "sample.size"], list(sample.size = sim$sample.size), mean)

157
sim/sim_1d_normal.R Normal file
View File

@ -0,0 +1,157 @@
library(tensorPredictors)
# library(RGCCA)
### Load modified version which _does not_ create a clusster in case of
### `n_cores == 1` allowing huge speed improvements! (at least on Ubuntu 22.04 LTS)
### Moreover, it is compatible with `Rscript`
### Also added `Encoding: UTF-8` in `DESCRIPTION`
devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_1d_normal-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# Set PRNG seed for reproducability
# Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
# which is `R`s way if indicating an integer.
set.seed(0x1dL, "Mersenne-Twister", "Inversion", "Rejection")
### Simulation configuration
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
dimX <- c(2, 3, 5) # predictor `X` dimension
dimF <- rep(2, length(dimX)) # "function" `F(y)` of responce `y` dimension
# setup true model parameters (all rank 1 betas)
betas <- Map(diag, 1, dimX, dimF)
Omegas <- Map(function(pj) 0.5^abs(outer(1:pj, 1:pj, `-`)), dimX) # AR(0.5)
eta1 <- 0
# define projections onto tri-diagonal matrixes
proj.Omegas <- Map(.projBand, Map(dim, Omegas), 1L, 1L)
# and project Omegas
Omegas <- Map(do.call, proj.Omegas, Map(list, Omegas))
# data sampling routine
sample.data <- function(sample.size, eta1, betas, Omegas) {
# responce is a standard normal variable
y <- rnorm(sample.size)
# F(y) is a tensor of monomials
F <- sapply(y, function(yi) Reduce(outer, Map(`^`, yi, Map(seq, 0, len = dimF))))
dim(F) <- c(dimF, sample.size)
# sample predictors from tensor normal X | Y = y (last axis is sample axis)
sample.axis <- length(betas) + 1L
Deltas <- Map(solve, Omegas) # normal covariances
mu_y <- mlm(mlm(F, betas) + as.vector(eta1), Deltas) # conditional mean
X <- mu_y + rtensornorm(sample.size, 0, Deltas, sample.axis) # responses X
list(X = X, F = F, y = y, sample.axis = sample.axis)
}
# Create a CSV logger to write simulation results to
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("sample.size", "rep", outer(
c("time", "dist.subspace", "dist.projection"), # measures
c("gmlm", "pca", "hopca", "tsir", "mgcca"), # methods
paste, sep = "."
))
)
# compute true (full) model parameters to compair estimates against
B.true <- Reduce(`%x%`, rev(betas))
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, eta1, betas, Omegas)
# fit different models
# Wrapped in try-catch clock to ensure the simulation continues,
# if an error occures continue with nest resplication and log an error message
try.catch.block <- tryCatch({
time.gmlm <- system.time(
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis,
proj.Omegas = proj.Omegas)
)["user.self"]
time.pca <- system.time(
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
)["user.self"]
time.hopca <- system.time(
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
)["user.self"]
time.tsir <- system.time(
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
)["user.self"]
# `mgcca` expects the first axis to be the sample axis
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
F1 <- cbind(y, y^2, y^3)
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X1, F1),
quiet = TRUE,
scheme = "factorial",
ncomp = c(prod(dimF), 1L)
)
)["user.self"]
}, error = print)
# Drop comparison in case any error (in any fitting routine)
if (inherits(try.catch.block, "error")) { next }
# Compute true reduction matrix
B.gmlm <- with(fit.gmlm, Reduce(`%x%`, rev(betas)))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
# `P_A = A (A' A)^-1 A'` and the normalization means that with
# respect to the dimensions of `A, B` the subspace distance is in the
# range `[0, 1]`.
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.pca <- dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace.mgcca <- dist.subspace(B.true, B.mgcca, normalize = TRUE)
# Projection Distances: Spectral norm (2-norm) `|| P_A - P_B ||_2`.
dist.projection.gmlm <- dist.projection(B.true, B.gmlm)
dist.projection.pca <- dist.projection(B.true, B.pca)
dist.projection.hopca <- dist.projection(B.true, B.hopca)
dist.projection.tsir <- dist.projection(B.true, B.tsir)
dist.projection.mgcca <- dist.projection(B.true, B.mgcca)
# Call CSV logger writing results to file
logger()
# print progress
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d\n",
sample.size, which(sample.size == sample.sizes),
length(sample.sizes), rep, reps))
}
}
### read simulation results generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
sim <- read.csv(log.file)
plot.sim(sim, "dist.subspace", main = "Subspace Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "dist.projection", main = "Projection Distance",
xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "time", main = "Runtime",
xlab = "Sample Size", ylab = "Time [s]", ylim = c(0, 18))

231
sim/sim_1e_normal.R Normal file
View File

@ -0,0 +1,231 @@
library(tensorPredictors)
# library(RGCCA) # for `mgcca`
### Load modified version which _does not_ create a clusster in case of
### `n_cores == 1` allowing huge speed improvements! (at least on Ubuntu 22.04 LTS)
### Moreover, it is compatible with `Rscript`
devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_1e_normal-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# Set PRNG seed for reproducability
# Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
# which is `R`s way if indicating an integer.
set.seed(0x1eL, "Mersenne-Twister", "Inversion", "Rejection")
### Simulation configuration
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
dimX <- c(5, 5) # predictor `X` dimension
dimF <- c(2, 2)
Sigma <- 0.5^abs(outer(1:prod(dimX), 1:prod(dimX), `-`)) # AR(0.5)
# # define projections onto tri-diagonal matrixes
# proj.betas <- Map(.projRank, rep(1L, length(dimX))) # wrong assumption of low rank betas
# proj.Omegas <- Map(.projBand, Map(c, dimX, dimX), 1L, 1L) # wrong assumption of band Scatter matrices
# data sampling routine
sample.data <- function(sample.size, dimX, dimF, B.true, Sigma) {
y <- rnorm(sample.size)
# the true F (in vectorized form)
vecF <- rbind(1, sin(y), cos(y), sin(y) * cos(y))
# sample vectorized X as a multi-variate normal (in vectorized form)
vecX <- B.true %*% vecF + t(chol(Sigma)) %*% matrix(rnorm(prod(sample.size, dimX)), prod(dimX))
X <- array(vecX, c(dimX, sample.size))
list(X, vecF, y, length(dim(X)))
}
# wrong assumption about the function `F(y)`
F.wrong <- function(y) array(rbind(1, y, y, y^2), c(2, 2, length(y)))
# Create a CSV logger to write simulation results to
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("sample.size", "rep", outer(
c("time", "dist.subspace", "dist.projection"), # measures
c("gmlm", "pca", "hopca", "tsir", "mgcca"), # methods
paste, sep = "."
))
)
# Miss-specify true beta as _not_ a kronecker product
B.true <- diag(1, prod(dimX), prod(dimF))
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
for (rep in seq_len(reps)) {
# Sample training data
c(X, F.true, y, sample.axis) %<-% sample.data(sample.size, dimX, dimF, B.true, Sigma)
# fit different models
# Wrapped in try-catch clock to ensure the simulation continues,
# if an error occures continue with nest resplication and log an error message
tryCatch({
time.gmlm <- system.time(
fit.gmlm <- gmlm_tensor_normal(X, F.wrong(y), sample.axis = sample.axis)
)["user.self"]
time.pca <- system.time(
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
)["user.self"]
time.hopca <- system.time(
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
)["user.self"]
time.tsir <- system.time(
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
)["user.self"]
# `mgcca` expects the first axis to be the sample axis
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X1, y),
quiet = TRUE,
scheme = "factorial",
ncomp = c(prod(dimF), 1),
ranks = c(prod(dimF), 1)
)
)["user.self"]
}, error = function(ex) {
print(ex)
})
# Compute true reduction matrix
B.gmlm <- with(fit.gmlm, Reduce(`%x%`, rev(betas)))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
# `P_A = A (A' A)^-1 A'` and the normalization means that with
# respect to the dimensions of `A, B` the subspace distance is in the
# range `[0, 1]`.
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.pca <- dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace.mgcca <- dist.subspace(B.true, B.mgcca, normalize = TRUE)
# Projection Distances: Spectral norm (2-norm) `|| P_A - P_B ||_2`.
dist.projection.gmlm <- dist.projection(B.true, B.gmlm)
dist.projection.pca <- dist.projection(B.true, B.pca)
dist.projection.hopca <- dist.projection(B.true, B.hopca)
dist.projection.tsir <- dist.projection(B.true, B.tsir)
dist.projection.mgcca <- dist.projection(B.true, B.mgcca)
# Call CSV logger writing results to file
logger()
# print progress
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d\n",
sample.size, which(sample.size == sample.sizes),
length(sample.sizes), rep, reps))
}
}
### read simulation results generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
sim <- read.csv(log.file)
# Remain sample size grouping variable to avoid conflicts
aggr.mean <- aggregate(sim, list(sampleSize = sim$sample.size), mean)
aggr.median <- aggregate(sim, list(sampleSize = sim$sample.size), median)
aggr.sd <- aggregate(sim, list(sampleSize = sim$sample.size), sd)
aggr.min <- aggregate(sim, list(sampleSize = sim$sample.size), min)
aggr.max <- aggregate(sim, list(sampleSize = sim$sample.size), max)
par(pch = 16, bty = "n", lty = "solid", lwd = 1.5)
cols <- c(gmlm = "blue", pca = "darkcyan", hopca = "red", tsir = "darkgreen",
mgcca = "purple")
with(aggr.mean, {
plot(range(sampleSize), c(0, 1), type = "n",
main = "Subspace Distance",
xlab = "Sample Size",
ylab = "Distance"
)
for (dist.name in ls(pattern = "^dist.subspace")) {
mean <- get(dist.name)
median <- aggr.median[aggr.sd$sampleSize == sampleSize, dist.name]
sd <- aggr.sd[aggr.sd$sampleSize == sampleSize, dist.name]
min <- aggr.min[aggr.sd$sampleSize == sampleSize, dist.name]
max <- aggr.max[aggr.sd$sampleSize == sampleSize, dist.name]
method <- tail(strsplit(dist.name, ".", fixed = TRUE)[[1]], 1)
col <- cols[method]
lines(sampleSize, mean, type = "o", col = col, lty = 1, lwd = 1)
lines(sampleSize, mean + sd, col = col, lty = 2, lwd = 0.8)
lines(sampleSize, mean - sd, col = col, lty = 2, lwd = 0.8)
lines(sampleSize, median, col = col, lty = 1, lwd = 1)
lines(sampleSize, min, col = col, lty = 3, lwd = 0.6)
lines(sampleSize, max, col = col, lty = 3, lwd = 0.6)
}
legend("topright", col = cols, lty = 1, legend = names(cols),
bty = "n", lwd = par("lwd"), pch = par("pch"))
})
with(aggr.mean, {
plot(range(sampleSize), c(0, 1), type = "n",
main = "Projection Distance",
xlab = "Sample Size",
ylab = "Distance"
)
for (dist.name in ls(pattern = "^dist.projection")) {
mean <- get(dist.name)
median <- aggr.median[aggr.sd$sampleSize == sampleSize, dist.name]
sd <- aggr.sd[aggr.sd$sampleSize == sampleSize, dist.name]
min <- aggr.min[aggr.sd$sampleSize == sampleSize, dist.name]
max <- aggr.max[aggr.sd$sampleSize == sampleSize, dist.name]
method <- tail(strsplit(dist.name, ".", fixed = TRUE)[[1]], 1)
col <- cols[method]
lines(sampleSize, mean, type = "o", col = col, lty = 1, lwd = 1)
lines(sampleSize, mean + sd, col = col, lty = 2, lwd = 0.8)
lines(sampleSize, mean - sd, col = col, lty = 2, lwd = 0.8)
lines(sampleSize, median, col = col, lty = 1, lwd = 1)
lines(sampleSize, min, col = col, lty = 3, lwd = 0.6)
lines(sampleSize, max, col = col, lty = 3, lwd = 0.6)
}
legend("topright", col = cols, lty = 1, legend = names(cols),
bty = "n", lwd = par("lwd"), pch = par("pch"))
})
# sample.axis <- 1L
# F.wrong <- array(outer(y, c(0, 1, 1, 2, 1, 2, 2, 3), `^`), c(10, 2, 2, 2))
# F.true <- array(c(1, sin(y), cos(y)))
# 1 s c
# s ss cs
# c sc cc
# s ss cs
# ss sss css
# cs scs ccs
# c sc cc
# sc ssc csc
# cc scc ccc
# osc <-
# I <- array(0, c(3, 3, 3))
# slice.index()

315
sim/sim_2a_ising.R Normal file
View File

@ -0,0 +1,315 @@
# library(tensorPredictors)
devtools::load_all("~/Work/tensorPredictors/tensorPredictors", export_all = FALSE)
library(logisticPCA)
# library(RGCCA)
# Use modified version of `RGCCA`
# Reasons (on Ubuntu 22.04 LTS):
# - compatible with `Rscript`
# - about 4 times faster for small problems
# Changes:
# - Run in main thread, avoid `parallel::makeCluster` if `n_cores == 1`
# (file "R/mgccak.R" lines 81:103)
# - added `Encoding: UTF-8`
# (file "DESCRIPTION")
suppressWarnings({
devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
})
setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "sim_2a_ising-%Y%m%dT%H%M")
# Source utility function used in most simulations (extracted for convenience)
source("./sim_utils.R")
# Set PRNG seed for reproducability
# Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
# which is `R`s way if indicating an integer.
set.seed(0x2aL, "Mersenne-Twister", "Inversion", "Rejection")
reps <- 100 # number of simulation replications
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
dimX <- c(2, 3) # predictor `X` dimension
dimF <- rep(1, length(dimX)) # "function" `F(y)` of responce `y` dimension
betas <- Map(diag, 1, dimX, dimF)
Omegas <- list(toeplitz(c(0, -2)), toeplitz(seq(1, 0, by = -0.5)))
# data sampling routine
sample.data <- function(sample.size, betas, Omegas) {
dimX <- mapply(nrow, betas)
dimF <- mapply(ncol, betas)
# generate response (sample axis is last axis)
y <- runif(prod(sample.size, dimF), -2, 2)
F <- array(y, dim = c(dimF, sample.size)) # ~ U[-1, 1]
Omega <- Reduce(kronecker, rev(Omegas))
X <- apply(F, length(dim(F)), function(Fi) {
dim(Fi) <- dimF
params <- diag(as.vector(mlm(Fi, betas))) + Omega
tensorPredictors::ising_sample(1, params)
})
dim(X) <- c(dimX, sample.size)
list(X = X, F = F, y = y, sample.axis = length(dim(X)))
}
lpca.hyper.param <- local({
c(X, F, y, sample.axis) %<-% sample.data(1e3, betas, Omegas)
vecX <- mat(X, sample.axis)
CV <- cv.lpca(vecX, ks = prod(dimF), ms = seq(1, 20, by = 0.5))
# plot(CV)
as.numeric(colnames(CV))[which.min(CV)]
})
# Create a CSV logger to write simulation results to
log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger(
file.name = log.file,
header = c("sample.size", "rep", outer(
c("time", "dist.subspace"), # measures
c("gmlm", "tnormal", "pca", "hopca", "lpca", "clpca", "tsir", "mgcca"), # methods
paste, sep = "."
))
)
# compute true (full) model parameters to compair estimates against
B.true <- Reduce(`%x%`, rev(betas))
### for each sample size
for (sample.size in sample.sizes) {
# repeate every simulation
for (rep in seq_len(reps)) {
# Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
# fit different models
# Wrapped in try-catch clock to ensure the simulation continues,
# if an error occures continue with nest resplication and log an error message
try.catch.block <- tryCatch({
time.gmlm <- system.time(
fit.gmlm <- gmlm_ising(X, F, sample.axis = sample.axis)
)["user.self"]
time.tnormal <- -1 # part of Ising gmlm (not relevent here)
time.pca <- system.time(
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
)["user.self"]
time.hopca <- system.time(
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
)["user.self"]
time.lpca <- system.time(
fit.lpca <- logisticPCA(mat(X, sample.axis), k = prod(dimF), m = lpca.hyper.param)
)["user.self"]
time.clpca <- system.time(
fit.clpca <- convexLogisticPCA(mat(X, sample.axis), k = prod(dimF), m = lpca.hyper.param)
)["user.self"]
time.tsir <- system.time(
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
)["user.self"]
# `mgcca` expects the first axis to be the sample axis
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
time.mgcca <- system.time(
fit.mgcca <- mgcca(
list(X1, y), # `drop` removes 1D axis
quiet = TRUE,
scheme = "factorial",
ncomp = c(1, 1)
)
)["user.self"]
}, error = print)
# Drop comparison in case any error (in any fitting routine)
if (inherits(try.catch.block, "error")) { next }
# Compute true reduction matrix
B.gmlm <- with(fit.gmlm, Reduce(`%x%`, rev(betas)))
B.tnormal <- with(attr(fit.gmlm, "tensor_normal"), Reduce(`%x%`, rev(betas)))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.lpca <- fit.lpca$U
B.clpca <- fit.clpca$U
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
# `P_A = A (A' A)^-1 A'` and the normalization means that with
# respect to the dimensions of `A, B` the subspace distance is in the
# range `[0, 1]`.
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace.tnormal <- dist.subspace(B.true, B.tnormal, normalize = TRUE)
dist.subspace.pca <- dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace.lpca <- dist.subspace(B.true, B.lpca, normalize = TRUE)
dist.subspace.clpca <- dist.subspace(B.true, B.clpca, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace.mgcca <- dist.subspace(B.true, B.mgcca, normalize = TRUE)
# # Projection Distances: Spectral norm (2-norm) `|| P_A - P_B ||_2`.
# equiv to Subspace distance in this case
# Call CSV logger writing results to file
logger()
# print progress
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d\n",
sample.size, which(sample.size == sample.sizes),
length(sample.sizes), rep, reps))
}
}
### read simulation results generate plots
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
sim <- read.csv(log.file)
plot.sim(sim, "dist.subspace", main = "Subspace Distance",
xlab = "Sample Size", ylab = "Distance")
# plot.sim(sim, "dist.projection", main = "Projection Distance",
# xlab = "Sample Size", ylab = "Distance")
plot.sim(sim, "time", main = "Runtime",
xlab = "Sample Size", ylab = "Time [s]", ylim = c(0, 18))
# aggr <- aggregate(sim, list(sim$sample.size), sd)
# stats <- aggr[, c(2, 5, 7, 9, 11, 13, 15, 17, 19)]
# names(stats) <- Map(tail, strsplit(names(stats), ".", fixed = TRUE), 1)
# round(stats * 100, 2)
# sim <- sim[!startsWith(names(sim), "time")]
# sim <- sim[names(sim) != "rep"]
# names(sim) <- strsplit(names(stats), ".", fixed = TRUE)
# (as.data.frame(Map(function(m, s) {
# paste0(round(m, 2), " (", round(s, 2), ")")
# },
# aggregate(sim, list(sim$size), mean),
# aggregate(sim, list(sim$size), sd)
# )))
# $n$ & gmlm & pca & hopca lpca & clpca & tsir & mgcca
# 100 & 0.34 (0.14) & 0.90 (0.04) & 0.90 (0.05) 0.94 (0.09) & 1 0.91 (0.03) & 0.48 (0.19) & 0.55 (0.13)
# 200 & 0.25 (0.11) & 0.90 (0.03) & 0.90 (0.03) 0.96 (0.07) & 2 0.91 (0.02) & 0.38 (0.16) & 0.53 (0.10)
# 300 & 0.20 (0.09) & 0.89 (0.02) & 0.89 (0.02) 0.97 (0.06) & 3 0.91 (0.02) & 0.29 (0.13) & 0.51 (0.11)
# 500 & 0.16 (0.07) & 0.90 (0.02) & 0.90 (0.02) 0.98 (0.01) & 4 0.91 (0.01) & 0.23 (0.10) & 0.50 (0.08)
# 750 & 0.13 (0.05) & 0.90 (0.01) & 0.90 (0.01) 0.98 (0.02) & 5 0.91 (0.01) & 0.23 (0.08) & 0.53 (0.06)
if (FALSE) {
################################################################################
### Work In Progress ###
################################################################################
library(tensorPredictors)
dimX <- c(3, 3, 3)
dimF <- c(1, 1, 1)
betas <- Map(diag, 1, dimX, dimF)
Omegas <- rev(list(
toeplitz(-1 * (seq_len(dimX[1]) == 2L)),
toeplitz(seq(1, 0, len = dimX[2])),
diag(dimX[3])
))
Omega <- Reduce(kronecker, rev(Omegas))
layout(matrix(c(
1, 3, 4,
2, 3, 5,
6, 6, 6
), nrow = 3, byrow = TRUE), heights = c(8, 8, 1))
`E(X |` <- function(Y) {
array(diag(ising_m2(diag(as.vector(mlm(array(Y, dimF), betas))) + Omega)), dimX)
}
`E(X |`(Y = -2)
`E(X |`(Y = +2)
col <- hcl.colors(256, "Blue-Red 3", rev = FALSE)
matrixImage(`E(X |`(Y = -2), main = "E[X | Y = -2]", zlim = c(0, 1), col = col)
matrixImage(`E(X |`(Y = -1), main = "E[X | Y = -1]", zlim = c(0, 1), col = col)
matrixImage(`E(X |`(Y = 0), main = "E[X | Y = 0]", zlim = c(0, 1), col = col)
matrixImage(`E(X |`(Y = +1), main = "E[X | Y = +1]", zlim = c(0, 1), col = col)
matrixImage(`E(X |`(Y = +2), main = "E[X | Y = +2]", zlim = c(0, 1), col = col)
{
restor.par <- par(mar = c(1.1, 2.1, 0, 2.1))
plot(0:1, 0:1, type = "n", xlab = "", ylab = "", axes = FALSE)
rasterImage(as.raster(matrix(col, nrow = 1)), 0, 0, 1, 1)
mtext("0", side = 2, las = 1, line = -3)
mtext("1", side = 4, las = 1, line = -3)
par(restor.par)
}
sample.size <- 100
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
# Design matrix containing vectorized X's
vecX <- mat(X, sample.axis)
fit.gmlm <- gmlm_ising(X, F)
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
fit.tsir <- TSIR(X, y, dimF, sample.axis = sample.axis)
fit.mgcca <- local({
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
F1 <- aperm(F, c(sample.axis, seq_along(dim(X))[-sample.axis]))
mgcca(
list(X1, drop(F1)), # `drop` removes 1D axis
quiet = TRUE,
scheme = "factorial",
ncomp = rep(prod(dimF), 2)
)
})
fit.lpca <- logisticPCA(vecX, k = prod(dimF), m = m)
fit.clpca <- convexLogisticPCA(vecX, k = prod(dimF), m = m)
B.gmlm <- Reduce(kronecker, rev(fit.gmlm$betas))
B.pca <- fit.pca$rotation
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
B.mgcca <- fit.mgcca$astar[[1]]
B.lpca <- fit.lpca$U
B.clpca <- fit.clpca$U
# B.lsvd <- ???
dist.subspace(B.true, B.gmlm, normalize = TRUE)
dist.subspace(B.true, B.pca, normalize = TRUE)
dist.subspace(B.true, B.hopca, normalize = TRUE)
dist.subspace(B.true, B.tsir, normalize = TRUE)
dist.subspace(B.true, B.mgcca, normalize = TRUE)
dist.subspace(B.true, B.lpca, normalize = TRUE)
dist.subspace(B.true, B.clpca, normalize = TRUE)
################################################################################
### End - Work In Progress ###
################################################################################
}