fix: gmlm_tensor_normal loss calc changed to numerically more stable version,

add: matrix rownames, colnames support to matrixImage
This commit is contained in:
Daniel Kapla 2023-12-30 10:04:35 +01:00
parent fa2a99f3f0
commit 13d3c63575
4 changed files with 74 additions and 124 deletions

View File

@ -1,35 +1,49 @@
library(tensorPredictors) library(tensorPredictors)
suppressPackageStartupMessages(library(Rdimtools))
# Source utility function used in most simulations (extracted for convenience)
setwd("~/Work/tensorPredictors/sim/")
source("./sim_utils.R")
# Data set sample size in every simulation # Data set sample size in every simulation
sample.size <- 500L sample.size <- 500L
# Nr. of per simulation replications # Nr. of per simulation replications
reps <- 100L reps <- 10L
# number of observation/response axes (order of the tensors) # number of observation/response axes (order of the tensors)
orders <- c(2L, 3L, 4L) orders <- c(2L, 3L, 4L)
# auto correlation coefficient for the mode-wise auto scatter matrices `Omegas` # auto correlation coefficient for the mode-wise auto scatter matrices `Omegas`
rhos <- seq(0, 0.8, by = 0.1) rhos <- seq(0, 0.8, by = 0.2)
setwd("~/Work/tensorPredictors/sim/") setwd("~/Work/tensorPredictors/sim/")
base.name <- format(Sys.time(), "failure_of_tsir-%Y%m%dT%H%M") base.name <- format(Sys.time(), "sim-tsir-%Y%m%dT%H%M")
# data sampling routine # data sampling routine
sample.data <- function(sample.size, betas, Omegas) { sample.data <- function(sample.size, betas, Omegas) {
dimF <- mapply(ncol, betas) dimF <- mapply(ncol, betas)
# responce is a standard normal variable # responce is a standard normal variable
y <- rnorm(sample.size) y <- sort(rnorm(sample.size))
y.pow <- Reduce(function(a, b) outer(a, b, `+`), Map(seq, 0L, len = dimF)) y.pow <- Reduce(function(a, b) outer(a, b, `+`), Map(seq, 0L, len = dimF))
F <- t(outer(y, as.vector(y.pow), `^`)) F <- t(outer(y, as.vector(y.pow), `^`)) / as.vector(factorial(y.pow))
dim(F) <- c(dimF, sample.size) dim(F) <- c(dimF, sample.size)
matplot(mat(F, length(dim(F))), type = "l")
abline(h = 0, lty = "dashed")
matplot(y, scale(mat(F, length(dim(F))), scale = FALSE), type = "l")
abline(h = 0, lty = "dashed")
# sample predictors from tensor normal X | Y = y (last axis is sample axis) # sample predictors from tensor normal X | Y = y (last axis is sample axis)
sample.axis <- length(betas) + 1L sample.axis <- length(betas) + 1L
Sigmas <- Map(solve, Omegas) Sigmas <- Map(solve, Omegas)
mu_y <- mlm(F, Map(`%*%`, Sigmas, betas)) mu_y <- mlm(F, Map(`%*%`, Sigmas, betas))
X <- mu_y + rtensornorm(sample.size, 0, Sigmas, sample.axis) X <- mu_y + rtensornorm(sample.size, 0, Sigmas, sample.axis)
list(X = X, F = F, y = y, sample.axis = sample.axis) # Make `y` into a `Y` tensor with variable axis all of dim 1
Y <- array(y, dim = c(rep(1L, length(dimF)), sample.size))
list(X = X, F = F, Y = Y, sample.axis = sample.axis)
} }
# Create a CSV logger to write simulation results to # Create a CSV logger to write simulation results to
@ -37,7 +51,7 @@ log.file <- paste(base.name, "csv", sep = ".")
logger <- CSV.logger( logger <- CSV.logger(
file.name = log.file, file.name = log.file,
header = c("rho", "order", "sample.size", "rep", "beta.version", outer( header = c("rho", "order", "sample.size", "rep", "beta.version", outer(
"dist.subspace", c("gmlm", "tsir", "sir"), "dist.subspace", c("gmlm", "gmlm.1d", "tsir", "sir"),
paste, sep = "." paste, sep = "."
)) ))
) )
@ -66,20 +80,23 @@ for (order in orders) {
# Version 1: repeated simulations # Version 1: repeated simulations
for (rep in seq_len(reps)) { for (rep in seq_len(reps)) {
# Sample training data # Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas) c(X, F, Y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
# Fit models to provided data # Fit models to provided data
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas) fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
fit.tsir <- TSIR(X, y, d = rep(1L, order), sample.axis = sample.axis) fit.gmlm.y <- gmlm_tensor_normal(X, Y, sample.axis = sample.axis)
fit.sir <- SIR(mat(X, sample.axis), y, d = 1L) fit.tsir <- TSIR(X, drop(Y), d = rep(1L, order), sample.axis = sample.axis)
fit.sir <- do.sir(mat(X, sample.axis), drop(Y), ndim = 1L)
# Extract minimal reduction matrices from fitted models # Extract minimal reduction matrices from fitted models
B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE] B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE]
B.gmlm.y <- Reduce(kronecker, rev(fit.gmlm.y$betas))
B.tsir <- Reduce(kronecker, rev(fit.tsir)) B.tsir <- Reduce(kronecker, rev(fit.tsir))
B.sir <- fit.sir B.sir <- fit.sir$projection
# Compute estimation to true minimal `B` distance # Compute estimation to true minimal `B` distance
dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE) dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE)
dist.subspace.gmlm.y <- dist.subspace(B.min.true, B.gmlm.y, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE) dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE)
dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE) dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE)
@ -104,20 +121,23 @@ for (order in orders) {
# Version 2: repeated simulations (identical to Version 1) # Version 2: repeated simulations (identical to Version 1)
for (rep in seq_len(reps)) { for (rep in seq_len(reps)) {
# Sample training data # Sample training data
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas) c(X, F, Y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
# Fit models to provided data # Fit models to provided data
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas) fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
fit.tsir <- TSIR(X, y, d = rep(1L, order), sample.axis = sample.axis) fit.gmlm.y <- gmlm_tensor_normal(X, Y, sample.axis = sample.axis)
fit.sir <- SIR(mat(X, sample.axis), y, d = 1L) fit.tsir <- TSIR(X, drop(Y), d = rep(1L, order), sample.axis = sample.axis)
fit.sir <- do.sir(mat(X, sample.axis), drop(Y), ndim = 1L)
# Extract minimal reduction matrices from fitted models # Extract minimal reduction matrices from fitted models
B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE] B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE]
B.gmlm.y <- Reduce(kronecker, rev(fit.gmlm.y$betas))
B.tsir <- Reduce(kronecker, rev(fit.tsir)) B.tsir <- Reduce(kronecker, rev(fit.tsir))
B.sir <- fit.sir B.sir <- fit.sir$projection
# Compute estimation to true minimal `B` distance # Compute estimation to true minimal `B` distance
dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE) dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE)
dist.subspace.gmlm.y <- dist.subspace(B.min.true, B.gmlm.y, normalize = TRUE)
dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE) dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE)
dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE) dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE)
@ -155,6 +175,13 @@ layout(rbind(
2 * length(orders) + 1 2 * length(orders) + 1
), heights = c(rep(6L, length(orders)), 1L)) ), heights = c(rep(6L, length(orders)), 1L))
col.methods <- c(
gmlm = "#000000",
gmlm.y = "#FF0000",
tsir = "#009E73",
sir = "#999999"
)
for (group in split(aggr, aggr[c("order", "beta.version")])) { for (group in split(aggr, aggr[c("order", "beta.version")])) {
order <- group$order[[1]] order <- group$order[[1]]
beta.version <- group$beta.version[[1]] beta.version <- group$beta.version[[1]]
@ -167,6 +194,7 @@ for (group in split(aggr, aggr[c("order", "beta.version")])) {
axis(2, at = seq(0, 1, by = 0.2)) axis(2, at = seq(0, 1, by = 0.2))
with(group, { with(group, {
lines(rho, dist.subspace.gmlm, col = col.methods["gmlm"], lwd = 3, type = "b", pch = 16) lines(rho, dist.subspace.gmlm, col = col.methods["gmlm"], lwd = 3, type = "b", pch = 16)
lines(rho, dist.subspace.gmlm.y, col = col.methods["gmlm.y"], lwd = 3, type = "b", pch = 16)
lines(rho, dist.subspace.tsir, col = col.methods["tsir"], lwd = 2, type = "b", pch = 16) lines(rho, dist.subspace.tsir, col = col.methods["tsir"], lwd = 2, type = "b", pch = 16)
lines(rho, dist.subspace.sir, col = col.methods["sir"], lwd = 2, type = "b", pch = 16) lines(rho, dist.subspace.sir, col = col.methods["sir"], lwd = 2, type = "b", pch = 16)
}) })
@ -176,49 +204,7 @@ for (group in split(aggr, aggr[c("order", "beta.version")])) {
lty = "dotted", col = "black") lty = "dotted", col = "black")
} }
} }
methods <- c("GMLM", "TSIR", "SIR") methods <- c("GMLM", "GMLM.y", "TSIR", "SIR")
restor.par <- par(
fig = c(0, 1, 0, 1),
oma = c(0, 0, 0, 0),
mar = c(1, 0, 0, 0),
new = TRUE
)
plot(0, type = "n", bty = "n", axes = FALSE, xlab = "", ylab = "")
legend("bottom", col = col.methods[tolower(methods)], legend = methods,
horiz = TRUE, lty = 1, bty = "n", lwd = c(3, 2, 2), pch = 16)
par(restor.par)
# new grouping for the aggregates
layout(rbind(
matrix(seq_len(2 * 3), ncol = 2),
2 * 3 + 1
), heights = c(rep(6L, 3), 1L))
for (group in split(aggr, aggr[c("rho", "beta.version")])) {
rho <- group$rho[[1]]
beta.version <- group$beta.version[[1]]
if (!(rho %in% c(0, .5, .8))) { next }
order <- group$order
plot(range(order), 0:1, main = sprintf("V%d, rho %.1f", beta.version, rho),
type = "n", bty = "n", axes = FALSE, xlab = expression(order), ylab = "Subspace Distance")
axis(1, at = order)
axis(2, at = seq(0, 1, by = 0.2))
with(group, {
lines(order, dist.subspace.gmlm, col = col.methods["gmlm"], lwd = 3, type = "b", pch = 16)
lines(order, dist.subspace.tsir, col = col.methods["tsir"], lwd = 2, type = "b", pch = 16)
lines(order, dist.subspace.sir, col = col.methods["sir"], lwd = 2, type = "b", pch = 16)
})
if (rho == 0.5 && beta.version == 2L) {
abline(v = 0.5, lty = "dotted", col = "black")
abline(h = group$dist.subspace.tsir[which(order == 3L)],
lty = "dotted", col = "black")
}
}
methods <- c("GMLM", "TSIR", "SIR")
restor.par <- par( restor.par <- par(
fig = c(0, 1, 0, 1), fig = c(0, 1, 0, 1),
oma = c(0, 0, 0, 0), oma = c(0, 0, 0, 0),

View File

@ -88,7 +88,7 @@ gmlm_tensor_normal <- function(X, F, sample.axis = length(dim(X)),
# Residuals # Residuals
R <- X - mlm(F, Map(`%*%`, Sigmas, betas)) R <- X - mlm(F, Map(`%*%`, Sigmas, betas))
# Covariance Estimates (moment based, TODO: implement MLE estimate!) # Covariance Estimates
Sigmas <- mcov(R, sample.axis, center = FALSE) Sigmas <- mcov(R, sample.axis, center = FALSE)
# Computing `Omega_j`s, the j'th mode presition matrices, in conjunction # Computing `Omega_j`s, the j'th mode presition matrices, in conjunction
@ -111,9 +111,16 @@ gmlm_tensor_normal <- function(X, F, sample.axis = length(dim(X)),
} }
} }
# store last loss and compute new value # store last loss
loss.last <- loss loss.last <- loss
loss <- mean(R * mlm(R, Omegas)) - sum(log(mapply(det, Omegas)) / dimX) # Numerically more stable version of `sum(log(mapply(det, Omegas)) / dimX)`
# which is itself equivalent to `log(det(Omega)) / prod(nrow(Omega))` where
# `Omega <- Reduce(kronecker, rev(Omegas))`.
det.Omega <- sum(mapply(function(Omega) {
sum(log(eigen(Omega, TRUE, TRUE)$values))
}, Omegas) / dimX)
# Compute new loss
loss <- mean(R * mlm(R, Omegas)) - det.Omega
# invoke the logger # invoke the logger
if (is.function(logger)) do.call(logger, list( if (is.function(logger)) do.call(logger, list(

View File

@ -73,48 +73,3 @@ projStiefel <- function(A) {
`[<-`(matrix(0, nrow(A), ncol(A)), mask, mean(A[mask])) `[<-`(matrix(0, nrow(A), ncol(A)), mask, mean(A[mask]))
} }
} }
#' Projections onto matrix manifolds
#'
#' @examples
#' p <- 5
#' q <- 4
#' A <- matrix(rnorm(p * q), p, q)
#'
#' # General Matrices
#' matProj("TriDiag", dim(A))(A)
#' matProj("Band", dim(A), low = 1, high = 2)(A)
#' matProj("Rank", rank = 2)(A)
#' matProj("Stiefel")(A)
#'
#' # Symmetric projections need square matrices
#' S <- matrix(rnorm(p^2), p)
#'
#' matProj("Sym")(S)
#' matProj("SymTriDiag", dim(S))(S)
#' matProj("SymBand", dim(S), low = 1, high = 2)(S)
#' matProj("PSD")(S)
#' matProj("SymRank", rank = 1)(S)
#'
#' @rdname matProj
#'
#' @export
matProj <- function(manifold, dims = NULL, low = NULL, high = NULL, sym = FALSE, rank = NULL) {
switch(tolower(manifold),
identity = identity,
sym = projSym,
tridiag = .projBand(dims, 1L, 1L),
symtridiag = .projSymBand(dims, 1L, 1L),
band = .projBand(dims, low, high),
symband = .projSymBand(dims, low, high),
psd = .projPSD(sym),
rank = .projRank(rank),
symrank = .projSymRank(rank),
stiefel = projStiefel
)
}
# #' Basis of ....
# mat.proj.basis <- function(manifold, dims = NULL, low = NULL, high = NULL, sym = FALSE, rank = NULL) ...

View File

@ -47,8 +47,10 @@ matrixImage <- function(A, add.values = FALSE,
x <- seq(1, ncol(A), by = 1) x <- seq(1, ncol(A), by = 1)
y <- seq(1, nrow(A)) y <- seq(1, nrow(A))
if (axes && new.plot) { if (axes && new.plot) {
axis(1, at = x - 0.5, labels = x, lwd = 0, lwd.ticks = 1) if (!is.character(xlabels <- colnames(A))) { xlabels <- x }
axis(2, at = y - 0.5, labels = rev(y), lwd = 0, lwd.ticks = 1, las = 1) if (!is.character(ylabels <- rownames(A))) { ylabels <- y }
axis(1, at = x - 0.5, labels = xlabels, lwd = 0, lwd.ticks = 1)
axis(2, at = y - 0.5, labels = rev(ylabels), lwd = 0, lwd.ticks = 1, las = 1)
} }
# Writes matrix values # Writes matrix values