fix: gmlm_tensor_normal loss calc changed to numerically more stable version,
add: matrix rownames, colnames support to matrixImage
This commit is contained in:
parent
fa2a99f3f0
commit
13d3c63575
134
sim/sim-tsir.R
134
sim/sim-tsir.R
|
@ -1,35 +1,49 @@
|
|||
library(tensorPredictors)
|
||||
suppressPackageStartupMessages(library(Rdimtools))
|
||||
|
||||
# Source utility function used in most simulations (extracted for convenience)
|
||||
setwd("~/Work/tensorPredictors/sim/")
|
||||
source("./sim_utils.R")
|
||||
|
||||
# Data set sample size in every simulation
|
||||
sample.size <- 500L
|
||||
# Nr. of per simulation replications
|
||||
reps <- 100L
|
||||
reps <- 10L
|
||||
# number of observation/response axes (order of the tensors)
|
||||
orders <- c(2L, 3L, 4L)
|
||||
# auto correlation coefficient for the mode-wise auto scatter matrices `Omegas`
|
||||
rhos <- seq(0, 0.8, by = 0.1)
|
||||
rhos <- seq(0, 0.8, by = 0.2)
|
||||
|
||||
|
||||
setwd("~/Work/tensorPredictors/sim/")
|
||||
base.name <- format(Sys.time(), "failure_of_tsir-%Y%m%dT%H%M")
|
||||
|
||||
base.name <- format(Sys.time(), "sim-tsir-%Y%m%dT%H%M")
|
||||
# data sampling routine
|
||||
sample.data <- function(sample.size, betas, Omegas) {
|
||||
dimF <- mapply(ncol, betas)
|
||||
|
||||
# responce is a standard normal variable
|
||||
y <- rnorm(sample.size)
|
||||
y <- sort(rnorm(sample.size))
|
||||
y.pow <- Reduce(function(a, b) outer(a, b, `+`), Map(seq, 0L, len = dimF))
|
||||
F <- t(outer(y, as.vector(y.pow), `^`))
|
||||
F <- t(outer(y, as.vector(y.pow), `^`)) / as.vector(factorial(y.pow))
|
||||
dim(F) <- c(dimF, sample.size)
|
||||
|
||||
matplot(mat(F, length(dim(F))), type = "l")
|
||||
abline(h = 0, lty = "dashed")
|
||||
|
||||
matplot(y, scale(mat(F, length(dim(F))), scale = FALSE), type = "l")
|
||||
abline(h = 0, lty = "dashed")
|
||||
|
||||
|
||||
# sample predictors from tensor normal X | Y = y (last axis is sample axis)
|
||||
sample.axis <- length(betas) + 1L
|
||||
Sigmas <- Map(solve, Omegas)
|
||||
mu_y <- mlm(F, Map(`%*%`, Sigmas, betas))
|
||||
X <- mu_y + rtensornorm(sample.size, 0, Sigmas, sample.axis)
|
||||
|
||||
list(X = X, F = F, y = y, sample.axis = sample.axis)
|
||||
# Make `y` into a `Y` tensor with variable axis all of dim 1
|
||||
Y <- array(y, dim = c(rep(1L, length(dimF)), sample.size))
|
||||
|
||||
list(X = X, F = F, Y = Y, sample.axis = sample.axis)
|
||||
}
|
||||
|
||||
# Create a CSV logger to write simulation results to
|
||||
|
@ -37,7 +51,7 @@ log.file <- paste(base.name, "csv", sep = ".")
|
|||
logger <- CSV.logger(
|
||||
file.name = log.file,
|
||||
header = c("rho", "order", "sample.size", "rep", "beta.version", outer(
|
||||
"dist.subspace", c("gmlm", "tsir", "sir"),
|
||||
"dist.subspace", c("gmlm", "gmlm.1d", "tsir", "sir"),
|
||||
paste, sep = "."
|
||||
))
|
||||
)
|
||||
|
@ -66,22 +80,25 @@ for (order in orders) {
|
|||
# Version 1: repeated simulations
|
||||
for (rep in seq_len(reps)) {
|
||||
# Sample training data
|
||||
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
|
||||
c(X, F, Y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
|
||||
|
||||
# Fit models to provided data
|
||||
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
|
||||
fit.tsir <- TSIR(X, y, d = rep(1L, order), sample.axis = sample.axis)
|
||||
fit.sir <- SIR(mat(X, sample.axis), y, d = 1L)
|
||||
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
|
||||
fit.gmlm.y <- gmlm_tensor_normal(X, Y, sample.axis = sample.axis)
|
||||
fit.tsir <- TSIR(X, drop(Y), d = rep(1L, order), sample.axis = sample.axis)
|
||||
fit.sir <- do.sir(mat(X, sample.axis), drop(Y), ndim = 1L)
|
||||
|
||||
# Extract minimal reduction matrices from fitted models
|
||||
B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE]
|
||||
B.tsir <- Reduce(kronecker, rev(fit.tsir))
|
||||
B.sir <- fit.sir
|
||||
B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE]
|
||||
B.gmlm.y <- Reduce(kronecker, rev(fit.gmlm.y$betas))
|
||||
B.tsir <- Reduce(kronecker, rev(fit.tsir))
|
||||
B.sir <- fit.sir$projection
|
||||
|
||||
# Compute estimation to true minimal `B` distance
|
||||
dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE)
|
||||
dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE)
|
||||
dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE)
|
||||
dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE)
|
||||
dist.subspace.gmlm.y <- dist.subspace(B.min.true, B.gmlm.y, normalize = TRUE)
|
||||
dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE)
|
||||
dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE)
|
||||
|
||||
# Write to simulation log file (CSV file)
|
||||
logger()
|
||||
|
@ -104,22 +121,25 @@ for (order in orders) {
|
|||
# Version 2: repeated simulations (identical to Version 1)
|
||||
for (rep in seq_len(reps)) {
|
||||
# Sample training data
|
||||
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
|
||||
c(X, F, Y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
|
||||
|
||||
# Fit models to provided data
|
||||
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
|
||||
fit.tsir <- TSIR(X, y, d = rep(1L, order), sample.axis = sample.axis)
|
||||
fit.sir <- SIR(mat(X, sample.axis), y, d = 1L)
|
||||
fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = sample.axis, proj.betas = proj.betas)
|
||||
fit.gmlm.y <- gmlm_tensor_normal(X, Y, sample.axis = sample.axis)
|
||||
fit.tsir <- TSIR(X, drop(Y), d = rep(1L, order), sample.axis = sample.axis)
|
||||
fit.sir <- do.sir(mat(X, sample.axis), drop(Y), ndim = 1L)
|
||||
|
||||
# Extract minimal reduction matrices from fitted models
|
||||
B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE]
|
||||
B.tsir <- Reduce(kronecker, rev(fit.tsir))
|
||||
B.sir <- fit.sir
|
||||
B.gmlm <- qr.Q(qr(Reduce(kronecker, rev(fit.gmlm$betas))))[, 1L, drop = FALSE]
|
||||
B.gmlm.y <- Reduce(kronecker, rev(fit.gmlm.y$betas))
|
||||
B.tsir <- Reduce(kronecker, rev(fit.tsir))
|
||||
B.sir <- fit.sir$projection
|
||||
|
||||
# Compute estimation to true minimal `B` distance
|
||||
dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE)
|
||||
dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE)
|
||||
dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE)
|
||||
dist.subspace.gmlm <- dist.subspace(B.min.true, B.gmlm, normalize = TRUE)
|
||||
dist.subspace.gmlm.y <- dist.subspace(B.min.true, B.gmlm.y, normalize = TRUE)
|
||||
dist.subspace.tsir <- dist.subspace(B.min.true, B.tsir, normalize = TRUE)
|
||||
dist.subspace.sir <- dist.subspace(B.min.true, B.sir, normalize = TRUE)
|
||||
|
||||
# Write to simulation log file (CSV file)
|
||||
logger()
|
||||
|
@ -155,6 +175,13 @@ layout(rbind(
|
|||
2 * length(orders) + 1
|
||||
), heights = c(rep(6L, length(orders)), 1L))
|
||||
|
||||
col.methods <- c(
|
||||
gmlm = "#000000",
|
||||
gmlm.y = "#FF0000",
|
||||
tsir = "#009E73",
|
||||
sir = "#999999"
|
||||
)
|
||||
|
||||
for (group in split(aggr, aggr[c("order", "beta.version")])) {
|
||||
order <- group$order[[1]]
|
||||
beta.version <- group$beta.version[[1]]
|
||||
|
@ -166,9 +193,10 @@ for (group in split(aggr, aggr[c("order", "beta.version")])) {
|
|||
axis(1, at = rho)
|
||||
axis(2, at = seq(0, 1, by = 0.2))
|
||||
with(group, {
|
||||
lines(rho, dist.subspace.gmlm, col = col.methods["gmlm"], lwd = 3, type = "b", pch = 16)
|
||||
lines(rho, dist.subspace.tsir, col = col.methods["tsir"], lwd = 2, type = "b", pch = 16)
|
||||
lines(rho, dist.subspace.sir, col = col.methods["sir"], lwd = 2, type = "b", pch = 16)
|
||||
lines(rho, dist.subspace.gmlm, col = col.methods["gmlm"], lwd = 3, type = "b", pch = 16)
|
||||
lines(rho, dist.subspace.gmlm.y, col = col.methods["gmlm.y"], lwd = 3, type = "b", pch = 16)
|
||||
lines(rho, dist.subspace.tsir, col = col.methods["tsir"], lwd = 2, type = "b", pch = 16)
|
||||
lines(rho, dist.subspace.sir, col = col.methods["sir"], lwd = 2, type = "b", pch = 16)
|
||||
})
|
||||
if (order == 3L && beta.version == 2L) {
|
||||
abline(v = 0.5, lty = "dotted", col = "black")
|
||||
|
@ -176,49 +204,7 @@ for (group in split(aggr, aggr[c("order", "beta.version")])) {
|
|||
lty = "dotted", col = "black")
|
||||
}
|
||||
}
|
||||
methods <- c("GMLM", "TSIR", "SIR")
|
||||
restor.par <- par(
|
||||
fig = c(0, 1, 0, 1),
|
||||
oma = c(0, 0, 0, 0),
|
||||
mar = c(1, 0, 0, 0),
|
||||
new = TRUE
|
||||
)
|
||||
plot(0, type = "n", bty = "n", axes = FALSE, xlab = "", ylab = "")
|
||||
legend("bottom", col = col.methods[tolower(methods)], legend = methods,
|
||||
horiz = TRUE, lty = 1, bty = "n", lwd = c(3, 2, 2), pch = 16)
|
||||
par(restor.par)
|
||||
|
||||
|
||||
# new grouping for the aggregates
|
||||
layout(rbind(
|
||||
matrix(seq_len(2 * 3), ncol = 2),
|
||||
2 * 3 + 1
|
||||
), heights = c(rep(6L, 3), 1L))
|
||||
|
||||
for (group in split(aggr, aggr[c("rho", "beta.version")])) {
|
||||
rho <- group$rho[[1]]
|
||||
beta.version <- group$beta.version[[1]]
|
||||
|
||||
if (!(rho %in% c(0, .5, .8))) { next }
|
||||
|
||||
order <- group$order
|
||||
|
||||
plot(range(order), 0:1, main = sprintf("V%d, rho %.1f", beta.version, rho),
|
||||
type = "n", bty = "n", axes = FALSE, xlab = expression(order), ylab = "Subspace Distance")
|
||||
axis(1, at = order)
|
||||
axis(2, at = seq(0, 1, by = 0.2))
|
||||
with(group, {
|
||||
lines(order, dist.subspace.gmlm, col = col.methods["gmlm"], lwd = 3, type = "b", pch = 16)
|
||||
lines(order, dist.subspace.tsir, col = col.methods["tsir"], lwd = 2, type = "b", pch = 16)
|
||||
lines(order, dist.subspace.sir, col = col.methods["sir"], lwd = 2, type = "b", pch = 16)
|
||||
})
|
||||
if (rho == 0.5 && beta.version == 2L) {
|
||||
abline(v = 0.5, lty = "dotted", col = "black")
|
||||
abline(h = group$dist.subspace.tsir[which(order == 3L)],
|
||||
lty = "dotted", col = "black")
|
||||
}
|
||||
}
|
||||
methods <- c("GMLM", "TSIR", "SIR")
|
||||
methods <- c("GMLM", "GMLM.y", "TSIR", "SIR")
|
||||
restor.par <- par(
|
||||
fig = c(0, 1, 0, 1),
|
||||
oma = c(0, 0, 0, 0),
|
||||
|
|
|
@ -88,7 +88,7 @@ gmlm_tensor_normal <- function(X, F, sample.axis = length(dim(X)),
|
|||
# Residuals
|
||||
R <- X - mlm(F, Map(`%*%`, Sigmas, betas))
|
||||
|
||||
# Covariance Estimates (moment based, TODO: implement MLE estimate!)
|
||||
# Covariance Estimates
|
||||
Sigmas <- mcov(R, sample.axis, center = FALSE)
|
||||
|
||||
# Computing `Omega_j`s, the j'th mode presition matrices, in conjunction
|
||||
|
@ -111,9 +111,16 @@ gmlm_tensor_normal <- function(X, F, sample.axis = length(dim(X)),
|
|||
}
|
||||
}
|
||||
|
||||
# store last loss and compute new value
|
||||
# store last loss
|
||||
loss.last <- loss
|
||||
loss <- mean(R * mlm(R, Omegas)) - sum(log(mapply(det, Omegas)) / dimX)
|
||||
# Numerically more stable version of `sum(log(mapply(det, Omegas)) / dimX)`
|
||||
# which is itself equivalent to `log(det(Omega)) / prod(nrow(Omega))` where
|
||||
# `Omega <- Reduce(kronecker, rev(Omegas))`.
|
||||
det.Omega <- sum(mapply(function(Omega) {
|
||||
sum(log(eigen(Omega, TRUE, TRUE)$values))
|
||||
}, Omegas) / dimX)
|
||||
# Compute new loss
|
||||
loss <- mean(R * mlm(R, Omegas)) - det.Omega
|
||||
|
||||
# invoke the logger
|
||||
if (is.function(logger)) do.call(logger, list(
|
||||
|
|
|
@ -73,48 +73,3 @@ projStiefel <- function(A) {
|
|||
`[<-`(matrix(0, nrow(A), ncol(A)), mask, mean(A[mask]))
|
||||
}
|
||||
}
|
||||
|
||||
#' Projections onto matrix manifolds
|
||||
#'
|
||||
#' @examples
|
||||
#' p <- 5
|
||||
#' q <- 4
|
||||
#' A <- matrix(rnorm(p * q), p, q)
|
||||
#'
|
||||
#' # General Matrices
|
||||
#' matProj("TriDiag", dim(A))(A)
|
||||
#' matProj("Band", dim(A), low = 1, high = 2)(A)
|
||||
#' matProj("Rank", rank = 2)(A)
|
||||
#' matProj("Stiefel")(A)
|
||||
#'
|
||||
#' # Symmetric projections need square matrices
|
||||
#' S <- matrix(rnorm(p^2), p)
|
||||
#'
|
||||
#' matProj("Sym")(S)
|
||||
#' matProj("SymTriDiag", dim(S))(S)
|
||||
#' matProj("SymBand", dim(S), low = 1, high = 2)(S)
|
||||
#' matProj("PSD")(S)
|
||||
#' matProj("SymRank", rank = 1)(S)
|
||||
#'
|
||||
#' @rdname matProj
|
||||
#'
|
||||
#' @export
|
||||
matProj <- function(manifold, dims = NULL, low = NULL, high = NULL, sym = FALSE, rank = NULL) {
|
||||
|
||||
switch(tolower(manifold),
|
||||
identity = identity,
|
||||
sym = projSym,
|
||||
tridiag = .projBand(dims, 1L, 1L),
|
||||
symtridiag = .projSymBand(dims, 1L, 1L),
|
||||
band = .projBand(dims, low, high),
|
||||
symband = .projSymBand(dims, low, high),
|
||||
psd = .projPSD(sym),
|
||||
rank = .projRank(rank),
|
||||
symrank = .projSymRank(rank),
|
||||
stiefel = projStiefel
|
||||
)
|
||||
|
||||
}
|
||||
|
||||
# #' Basis of ....
|
||||
# mat.proj.basis <- function(manifold, dims = NULL, low = NULL, high = NULL, sym = FALSE, rank = NULL) ...
|
||||
|
|
|
@ -47,8 +47,10 @@ matrixImage <- function(A, add.values = FALSE,
|
|||
x <- seq(1, ncol(A), by = 1)
|
||||
y <- seq(1, nrow(A))
|
||||
if (axes && new.plot) {
|
||||
axis(1, at = x - 0.5, labels = x, lwd = 0, lwd.ticks = 1)
|
||||
axis(2, at = y - 0.5, labels = rev(y), lwd = 0, lwd.ticks = 1, las = 1)
|
||||
if (!is.character(xlabels <- colnames(A))) { xlabels <- x }
|
||||
if (!is.character(ylabels <- rownames(A))) { ylabels <- y }
|
||||
axis(1, at = x - 0.5, labels = xlabels, lwd = 0, lwd.ticks = 1)
|
||||
axis(2, at = y - 0.5, labels = rev(ylabels), lwd = 0, lwd.ticks = 1, las = 1)
|
||||
}
|
||||
|
||||
# Writes matrix values
|
||||
|
|
Loading…
Reference in New Issue