2021-11-05 17:07:37 +00:00
|
|
|
|
|
|
|
#' Coordinate-Independent Sparce Estimation.
|
|
|
|
#'
|
|
|
|
#' Solves penalized version of a GEP (Generalized Eigenvalue Problem)
|
|
|
|
#' \deqn{M V = N \Lambda V}
|
|
|
|
#' with \eqn{\Lambda} a matrix with eigenvalues on the main diagonal and \eqn{V}
|
|
|
|
#' are the first \eqn{d} eigenvectors.
|
|
|
|
#'
|
|
|
|
#' TODO: DOES NOT WORK, DON'T KNOW WHY (contact first author for the Matlab code)
|
|
|
|
#'
|
|
|
|
#' @param M is the GEP's left hand side
|
|
|
|
#' @param N is the GEP's right hand side
|
|
|
|
#' @param d number of leading eigenvalues, -vectors to be computed
|
|
|
|
#' @param max.iter maximum number of iterations for iterative optimization
|
|
|
|
#' @param Theta Penalty parameter, if not provided an reasonable estimate for
|
|
|
|
#' a grid of parameters is computed. If Theta is a vector (or number), the
|
|
|
|
#' provided values of Theta are used as penalty parameter candidates.
|
|
|
|
#' @param tol.norm numerical tolerance for dropping rows
|
|
|
|
#' @param tol.break break condition tolerance
|
|
|
|
#'
|
|
|
|
#' @returns a list
|
|
|
|
#'
|
|
|
|
#' @examples \dontrun{
|
|
|
|
#' # Study 1-4 from CISE paper
|
|
|
|
#' dataset <- function(name, n = 60, p = 24) {
|
|
|
|
#' name <- toupper(name)
|
|
|
|
#' if (!startsWith('M', name)) { name <- paste0('M', name) }
|
|
|
|
#'
|
|
|
|
#' if (name %in% c('M1', 'M2', 'M3')) {
|
|
|
|
#' Sigma <- 0.5^abs(outer(1:p, 1:p, `-`))
|
|
|
|
#' X <- rmvnorm(n, sigma = Sigma)
|
|
|
|
#' y <- switch(name,
|
|
|
|
#' M1 = rowSums(X[, 1:3]) + rnorm(n, 0, 0.5),
|
|
|
|
#' M2 = rowSums(X[, 1:3]) + rnorm(n, 0, 2),
|
|
|
|
#' M3 = X[, 1] / (0.5 + (X[, 2] + 1.5)^2) + rnorm(n, 0, 0.2)
|
|
|
|
#' )
|
|
|
|
#' B <- switch(name,
|
|
|
|
#' M1 = as.matrix(as.double(1:p < 4)),
|
|
|
|
#' M2 = as.matrix(as.double(1:p < 4)),
|
|
|
|
#' M3 = diag(1, p, 2)
|
|
|
|
#' )
|
|
|
|
#' } else if (name == 'M4') {
|
|
|
|
#' y <- rnorm(n)
|
|
|
|
#' Delta <- 0.5^abs(outer(1:p, 1:p, `-`))
|
|
|
|
#' Gamma <- 0.5 * cbind(
|
|
|
|
#' (1:p <= 4),
|
|
|
|
#' (-(1:p <= 4))^(1:p + 1)
|
|
|
|
#' )
|
|
|
|
#' B <- qr.Q(qr(solve(Delta, Gamma)))
|
|
|
|
#' X <- cbind(y, y^2) %*% t(Gamma) +
|
|
|
|
#' matpow(Delta, 0.5) %*% rmvnorm(n, rep(0, p))
|
|
|
|
#' } else {
|
|
|
|
#' stop('Unknown dataset name.')
|
|
|
|
#' }
|
|
|
|
#'
|
|
|
|
#' list(X = X, y = y, B = B)
|
|
|
|
#' }
|
|
|
|
#' # Sample dataset
|
|
|
|
#' n <- 1000
|
|
|
|
#' ds <- dataset(3, n = n)
|
|
|
|
#' # Convert to PFC associated GEP
|
|
|
|
#' Fy <- with(ds, cbind(abs(y), y, y^2))
|
|
|
|
#' P.Fy <- Fy %*% solve(crossprod(Fy), t(Fy))
|
|
|
|
#' M <- with(ds, crossprod(X, P.Fy %*% X) / nrow(X)) # Sigma Fit
|
|
|
|
#' N <- cov(ds$X) # Sigma
|
|
|
|
#'
|
|
|
|
#' fits <- CISE(M, N, d = ncol(ds$B), Theta = log(seq(1, exp(1e-3), len = 1000)))
|
|
|
|
#'
|
|
|
|
#' BIC <- unlist(Map(attr, fits, 'BIC'))
|
|
|
|
#' df <- unlist(Map(attr, fits, 'df'))
|
|
|
|
#' dist <- unlist(Map(attr, fits, 'dist'))
|
|
|
|
#' iter <- unlist(Map(attr, fits, 'iter'))
|
|
|
|
#' theta <- unlist(Map(attr, fits, 'theta'))
|
|
|
|
#' p.theta <- unlist(Map(function(V) sum(rowSums(V^2) > 1e-9), fits))
|
|
|
|
#'
|
|
|
|
#' par(mfrow = c(2, 2))
|
|
|
|
#' plot(theta, BIC, type = 'l')
|
|
|
|
#' plot(theta, p.theta, type = 'l')
|
|
|
|
#' plot(theta, dist, type = 'l')
|
|
|
|
#' plot(theta, iter, type = 'l')
|
|
|
|
#' }
|
|
|
|
#'
|
|
|
|
#' @seealso "Coordinate-Independent Sparse Sufficient Dimension
|
|
|
|
#' Reduction and Variable Selection" By Xin Chen, Changliang Zou and
|
|
|
|
#' R. Dennis Cook.
|
|
|
|
#'
|
|
|
|
#' @suggest RSpectra
|
|
|
|
#'
|
|
|
|
#' @export
|
2021-11-12 17:22:45 +00:00
|
|
|
CISE <- function(M, N, d = 1L, method = "PFC", max.iter = 100L, Theta = NULL,
|
|
|
|
tol.norm = 1e-6, tol.break = 1e-6, r = 0.5
|
2021-11-05 17:07:37 +00:00
|
|
|
) {
|
|
|
|
|
|
|
|
isrN <- matpow(N, -0.5) # N^-1/2 ... Inverse Square-Root of N
|
|
|
|
G <- isrN %*% M %*% isrN # G = N^-1/2 M N^-1/2
|
|
|
|
|
|
|
|
# Step 1: Solve (ordinary, unconstraint) eigenvalue problem used as an
|
|
|
|
# initial value for following iterative optimization (Solution of (2.8))
|
|
|
|
Gamma <- if (requireNamespace("RSpectra", quietly = TRUE)) {
|
|
|
|
RSpectra::eigs_sym(G, d)$vectors
|
|
|
|
} else {
|
|
|
|
eigen(G, symmetric = TRUE)$vectors[, d, drop = FALSE]
|
|
|
|
}
|
|
|
|
V.init <- isrN %*% Gamma
|
|
|
|
|
|
|
|
# Build penalty grid
|
|
|
|
if (missing(Theta)) {
|
|
|
|
# TODO: figure out what a good min to max in steps grid is
|
|
|
|
theta.max <- sqrt(max(rowSums(Gamma^2)))
|
|
|
|
Theta <- seq(0.01 * theta.max, 0.75 * theta.max, length.out = 10)
|
|
|
|
}
|
|
|
|
|
|
|
|
norms <- sqrt(rowSums(V.init^2)) # row norms of V
|
2021-11-12 17:22:45 +00:00
|
|
|
theta.scale <- 0.5 * ifelse(norms < tol.norm, 0, norms^(-r))
|
2021-11-05 17:07:37 +00:00
|
|
|
|
|
|
|
# For each penalty candidate
|
|
|
|
fits <- lapply(Theta, function(theta) {
|
|
|
|
# Step 2: Iteratively optimize constraint GEP
|
|
|
|
V <- V.init
|
2021-11-12 17:22:45 +00:00
|
|
|
dropped <- rep(FALSE, nrow(M)) # Keep track of dropped variables
|
2021-11-05 17:07:37 +00:00
|
|
|
for (iter in seq_len(max.iter)) {
|
2021-11-12 17:22:45 +00:00
|
|
|
# Compute current row norms
|
2021-11-05 17:07:37 +00:00
|
|
|
norms <- sqrt(rowSums(V^2)) # row norms of V
|
2021-11-12 17:22:45 +00:00
|
|
|
# Check if variables are dropped. If so, update dropped and
|
|
|
|
# recompute the inverse square root of N
|
|
|
|
if (any(norms < tol.norm)) {
|
|
|
|
dropped[!dropped] <- norms < tol.norm
|
|
|
|
norms <- norms[!(norms < tol.norm)]
|
|
|
|
isrN <- matpow(N[!dropped, !dropped], -0.5)
|
|
|
|
}
|
|
|
|
# Approx. penalty term derivative at current position
|
|
|
|
h <- theta * (theta.scale[!dropped] / norms)
|
2021-11-05 17:07:37 +00:00
|
|
|
|
2021-11-12 17:22:45 +00:00
|
|
|
# Updated G at current position (scaling by 1/2 done in `theta.scale`)
|
|
|
|
A <- G[!dropped, !dropped] - (isrN %*% (h * isrN))
|
2021-11-05 17:07:37 +00:00
|
|
|
# Solve next iteration GEP
|
|
|
|
Gamma <- if (requireNamespace("RSpectra", quietly = TRUE)) {
|
|
|
|
RSpectra::eigs_sym(A, d)$vectors
|
|
|
|
} else {
|
|
|
|
eigen(A, symmetric = TRUE)$vectors[, d, drop = FALSE]
|
|
|
|
}
|
|
|
|
V.last <- V
|
|
|
|
V <- isrN %*% Gamma
|
|
|
|
|
2021-11-12 17:22:45 +00:00
|
|
|
# Check if there are enough variables left
|
|
|
|
if (nrow(V) < d + 1) {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
# Break dondition (only when nothing dropped)
|
|
|
|
if (nrow(V.last) == nrow(V)
|
|
|
|
&& dist.subspace(V.last, V, normalize = TRUE) < tol.break) {
|
2021-11-05 17:07:37 +00:00
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-11-12 17:22:45 +00:00
|
|
|
# Recreate dropped variables and fill parameters with 0.
|
|
|
|
V.full <- matrix(0, nrow(M), d)
|
|
|
|
V.full[!dropped, ] <- V
|
|
|
|
|
2021-11-05 17:07:37 +00:00
|
|
|
# df <- (sum(!dropped) - d) * d
|
|
|
|
# BIC <- -sum(V * (M %*% V)) + log(n) * df / n
|
|
|
|
# cat("theta:", sprintf('%7.3f', range(theta)),
|
|
|
|
# "- iter:", sprintf('%3d', iter),
|
|
|
|
# "- df:", sprintf('%3d', df),
|
|
|
|
# "- BIC:", sprintf('%7.3f', BIC),
|
|
|
|
# "- dist:", sprintf('%7.3f', dist.subspace(V.last, V, normalize = TRUE)),
|
|
|
|
# # "- ", paste(sprintf('%6.2f', norms), collapse = ", "),
|
|
|
|
# '\n')
|
|
|
|
|
2021-11-12 17:22:45 +00:00
|
|
|
structure(qr.Q(qr(V.full)),
|
2021-11-05 17:07:37 +00:00
|
|
|
theta = theta, iter = iter, BIC = BIC, df = df,
|
|
|
|
dist = dist.subspace(V.last, V, normalize = TRUE))
|
|
|
|
})
|
|
|
|
|
2021-11-12 17:22:45 +00:00
|
|
|
structure(fits,
|
|
|
|
call = match.call(),
|
|
|
|
class = c("tensorPredictors", "CISE"))
|
2021-11-05 17:07:37 +00:00
|
|
|
}
|