tensor_predictors/mvbernoulli/src/print.cpp

54 lines
1.5 KiB
C++
Raw Normal View History

#include <iomanip>
#include <Rcpp.h>
#include "types.h"
// [[Rcpp::export(name = "print.mvbinary", rng = false)]]
void print_mvbinary(const MVBinary& binary, int nrLines = 10) {
// Divider bits
constexpr uint32_t div = 0x88888888;
// Get nr of element to be printed
nrLines = nrLines < binary.size() ? nrLines : binary.size();
// from first to nr lines print binary events to console
for (int i = 0; i < nrLines; ++i) {
uint32_t val = binary[i];
Rcpp::Rcout << std::setw(12) << std::right << val << ": ";
for (uint32_t j = 0; j < binary.dim(); ++j) {
Rcpp::Rcout << ((val & (1 << j)) ? '1' : '.');
if (div & (1 << j)) {
Rcpp::Rcout << ' ';
}
}
Rcpp::Rcout << '\n';
}
// report skipped entries (if any)
if (nrLines < binary.size()) {
Rcpp::Rcout << "[ skipping " << (binary.size() - nrLines) << " lines ]\n";
}
Rcpp::Rcout << std::flush;
}
// [[Rcpp::export(rng = false)]]
void printBits(const Rcpp::IntegerVector& ints) {
// Value with only the left most bit set
constexpr uint32_t lmb = 1UL << 31;
for (uint32_t val : ints) {
Rcpp::Rcout << std::setw(12) << std::right << val << ": ";
for (int j = 0; j < 8; ++j) {
for (int k = 0; k < 4; ++k) {
Rcpp::Rcout << ((val & lmb) ? '1' : '.');
val <<= 1;
}
Rcpp::Rcout << ' ';
}
Rcpp::Rcout << '\n';
}
Rcpp::Rcout << std::flush;
}