245 lines
9.1 KiB
R
245 lines
9.1 KiB
R
|
library(tensorPredictors)
|
||
|
# library(logisticPCA)
|
||
|
# # library(RGCCA)
|
||
|
# # Use modified version of `RGCCA`
|
||
|
# # Reasons (on Ubuntu 22.04 LTS):
|
||
|
# # - compatible with `Rscript`
|
||
|
# # - about 4 times faster for small problems
|
||
|
# # Changes:
|
||
|
# # - Run in main thread, avoid `parallel::makeCluster` if `n_cores == 1`
|
||
|
# # (file "R/mgccak.R" lines 81:103)
|
||
|
# # - added `Encoding: UTF-8`
|
||
|
# # (file "DESCRIPTION")
|
||
|
# suppressWarnings({
|
||
|
# devtools::load_all("~/Work/tensorPredictors/References/Software/TGCCA-modified", export_all = FALSE)
|
||
|
# })
|
||
|
|
||
|
# setwd("~/Work/tensorPredictors/sim/")
|
||
|
# base.name <- format(Sys.time(), "sim_2e_ising-%Y%m%dT%H%M")
|
||
|
|
||
|
# # Source utility function used in most simulations (extracted for convenience)
|
||
|
# source("./sim_utils.R")
|
||
|
|
||
|
# # Set PRNG seed for reproducability
|
||
|
# # Note: `0x` is the HEX number prefix and the trailing `L` stands for "long"
|
||
|
# # which is `R`s way if indicating an integer.
|
||
|
# set.seed(seed <- 0x2eL, "Mersenne-Twister", "Inversion", "Rejection")
|
||
|
|
||
|
|
||
|
reps <- 100 # number of simulation replications
|
||
|
sample.sizes <- c(100, 200, 300, 500, 750) # sample sizes `n`
|
||
|
dimX <- c(5, 5, 5) # predictor `X` dimension
|
||
|
dimF <- c(2, 2, 2) # "function" `F(y)` of responce `y` dimension
|
||
|
|
||
|
betas <- Map(matrix, 1, dimX, dimF)
|
||
|
|
||
|
Omegas <- Map(function(p) `diag<-`(matrix(0.5, p, p), 0), dimX)
|
||
|
|
||
|
|
||
|
# data sampling routine
|
||
|
sample.data <- function(sample.size, betas, Omegas) {
|
||
|
dimX <- mapply(nrow, betas)
|
||
|
dimF <- mapply(ncol, betas)
|
||
|
|
||
|
# generate response (sample axis is last axis)
|
||
|
y <- runif(sample.size, -1, 1)
|
||
|
F <- aperm(array(c(
|
||
|
+sinpi(y), +sinpi(2 * y),
|
||
|
+cospi(y), +cospi(2 * y),
|
||
|
-cospi(y), -cospi(2 * y),
|
||
|
+sinpi(y), +sinpi(2 * y)
|
||
|
), dim = c(length(y), 2, 2, 2)), c(2, 3, 4, 1))
|
||
|
|
||
|
Omega <- Reduce(kronecker, rev(Omegas))
|
||
|
|
||
|
X <- apply(F, length(dim(F)), function(Fi) {
|
||
|
dim(Fi) <- dimF
|
||
|
params <- diag(as.vector(mlm(Fi, betas))) + Omega
|
||
|
tensorPredictors::ising_sample(1, params)
|
||
|
})
|
||
|
dim(X) <- c(dimX, sample.size)
|
||
|
|
||
|
list(X = X, F = F, y = y, sample.axis = 3)
|
||
|
}
|
||
|
|
||
|
sample.size <- 100L
|
||
|
|
||
|
# Sample training data
|
||
|
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# compute true (full) model parameters to compair estimates against
|
||
|
B.true <- Reduce(`%x%`, rev(betas))
|
||
|
|
||
|
# Build projections onto `all elements are equal except diagonal is zero` matrices
|
||
|
# proj.Omegas <- Map(function(Omega) {
|
||
|
# proj <- as.vector(Omega) %*% pinv(as.vector(Omega))
|
||
|
# function(Omega) {
|
||
|
# matrix(proj %*% as.vector(Omega), nrow = nrow(Omega))
|
||
|
# }
|
||
|
# }, Omegas)
|
||
|
proj.Omegas <- Map(.projMaskedMean, Map(as.logical, Omegas))
|
||
|
|
||
|
# data sampling routine
|
||
|
sample.data <- function(sample.size, betas, Omegas) {
|
||
|
dimX <- mapply(nrow, betas)
|
||
|
dimF <- mapply(ncol, betas)
|
||
|
|
||
|
# generate response (sample axis is last axis)
|
||
|
y <- runif(sample.size, -1, 1)
|
||
|
F <- aperm(array(c(
|
||
|
sinpi(y), -cospi(y),
|
||
|
cospi(y), sinpi(y)
|
||
|
), dim = c(length(y), 2, 2)), c(2, 3, 1))
|
||
|
|
||
|
Omega <- Reduce(kronecker, rev(Omegas))
|
||
|
|
||
|
X <- apply(F, 3, function(Fi) {
|
||
|
dim(Fi) <- dimF
|
||
|
params <- diag(as.vector(mlm(Fi, betas))) + Omega
|
||
|
tensorPredictors::ising_sample(1, params)
|
||
|
})
|
||
|
dim(X) <- c(dimX, sample.size)
|
||
|
|
||
|
list(X = X, F = F, y = y, sample.axis = 3)
|
||
|
}
|
||
|
|
||
|
# # has been run once with initial seed
|
||
|
# lpca.hyper.param <- local({
|
||
|
# c(X, F, y, sample.axis) %<-% sample.data(1e3, betas, Omegas)
|
||
|
# vecX <- mat(X, sample.axis)
|
||
|
# CV <- cv.lpca(vecX, ks = prod(dimF), ms = seq(1, 30, by = 1))
|
||
|
# # plot(CV)
|
||
|
# as.numeric(colnames(CV))[which.min(CV)]
|
||
|
# })
|
||
|
# set.seed(seed, "Mersenne-Twister", "Inversion", "Rejection")
|
||
|
lpca.hyper.param <- 10
|
||
|
|
||
|
|
||
|
# Create a CSV logger to write simulation results to
|
||
|
log.file <- paste(base.name, "csv", sep = ".")
|
||
|
logger <- CSV.logger(
|
||
|
file.name = log.file,
|
||
|
header = c("sample.size", "rep", outer(
|
||
|
c("time", "dist.subspace", "dist.projection"), # < measures, v methods
|
||
|
c("gmlm", "tnormal", "pca", "hopca", "lpca", "clpca", "tsir", "mgcca"),
|
||
|
paste, sep = "."
|
||
|
))
|
||
|
)
|
||
|
|
||
|
|
||
|
### for each sample size
|
||
|
for (sample.size in sample.sizes) {
|
||
|
# repeate every simulation
|
||
|
for (rep in seq_len(reps)) {
|
||
|
# Sample training data
|
||
|
c(X, F, y, sample.axis) %<-% sample.data(sample.size, betas, Omegas)
|
||
|
|
||
|
# start timing for reporting
|
||
|
start.timer()
|
||
|
|
||
|
# fit different models
|
||
|
# Wrapped in try-catch clock to ensure the simulation continues,
|
||
|
# if an error occures continue with nest resplication and log an error message
|
||
|
try.catch.block <- tryCatch({
|
||
|
time.gmlm <- system.time(
|
||
|
fit.gmlm <- gmlm_ising(X, F, y, sample.axis = sample.axis,
|
||
|
proj.Omegas = proj.Omegas)
|
||
|
)["user.self"]
|
||
|
time.tnormal <- -1 # part of Ising gmlm (not relevent here)
|
||
|
time.pca <- system.time(
|
||
|
fit.pca <- prcomp(mat(X, sample.axis), rank. = prod(dimF))
|
||
|
)["user.self"]
|
||
|
time.hopca <- system.time(
|
||
|
fit.hopca <- HOPCA(X, npc = dimF, sample.axis = sample.axis)
|
||
|
)["user.self"]
|
||
|
time.lpca <- system.time(
|
||
|
fit.lpca <- logisticPCA(mat(X, sample.axis), k = prod(dimF),
|
||
|
m = lpca.hyper.param)
|
||
|
)["user.self"]
|
||
|
time.clpca <- system.time(
|
||
|
fit.clpca <- convexLogisticPCA(mat(X, sample.axis), k = prod(dimF),
|
||
|
m = lpca.hyper.param)
|
||
|
)["user.self"]
|
||
|
time.tsir <- system.time(
|
||
|
fit.tsir <- TSIR(X, y, d = dimF, sample.axis = sample.axis)
|
||
|
)["user.self"]
|
||
|
# `mgcca` expects the first axis to be the sample axis
|
||
|
X1 <- aperm(X, c(sample.axis, seq_along(dim(X))[-sample.axis]))
|
||
|
F1 <- cbind(sinpi(y), cospi(y))
|
||
|
time.mgcca <- system.time(
|
||
|
fit.mgcca <- mgcca(list(X1, F1), ncomp = c(prod(dimF), 1L),
|
||
|
quiet = TRUE, scheme = "factorial")
|
||
|
)["user.self"]
|
||
|
}, error = print)
|
||
|
|
||
|
# Get elapsed time from last timer start and the accumulated total time
|
||
|
# (_not_ a precide timing, only to get an idea)
|
||
|
c(elapsed, total.time) %<-% end.timer()
|
||
|
|
||
|
# Drop comparison in case any error (in any fitting routine)
|
||
|
if (inherits(try.catch.block, "error")) { next }
|
||
|
|
||
|
# Compute true reduction matrix
|
||
|
B.gmlm <- with(fit.gmlm, Reduce(`%x%`, rev(betas)))
|
||
|
B.tnormal <- with(attr(fit.gmlm, "tensor_normal"), Reduce(`%x%`, rev(betas)))
|
||
|
B.pca <- fit.pca$rotation
|
||
|
B.hopca <- Reduce(`%x%`, rev(fit.hopca))
|
||
|
B.lpca <- fit.lpca$U
|
||
|
B.clpca <- fit.clpca$U
|
||
|
B.tsir <- Reduce(`%x%`, rev(fit.tsir))
|
||
|
B.mgcca <- fit.mgcca$astar[[1]]
|
||
|
|
||
|
# Subspace Distances: Normalized `|| P_A - P_B ||_F` where
|
||
|
# `P_A = A (A' A)^-1 A'` and the normalization means that with
|
||
|
# respect to the dimensions of `A, B` the subspace distance is in the
|
||
|
# range `[0, 1]`.
|
||
|
dist.subspace.gmlm <- dist.subspace(B.true, B.gmlm, normalize = TRUE)
|
||
|
dist.subspace.tnormal <- dist.subspace(B.true, B.tnormal, normalize = TRUE)
|
||
|
dist.subspace.pca <- dist.subspace(B.true, B.pca, normalize = TRUE)
|
||
|
dist.subspace.hopca <- dist.subspace(B.true, B.hopca, normalize = TRUE)
|
||
|
dist.subspace.lpca <- dist.subspace(B.true, B.lpca, normalize = TRUE)
|
||
|
dist.subspace.clpca <- dist.subspace(B.true, B.clpca, normalize = TRUE)
|
||
|
dist.subspace.tsir <- dist.subspace(B.true, B.tsir, normalize = TRUE)
|
||
|
dist.subspace.mgcca <- dist.subspace(B.true, B.mgcca, normalize = TRUE)
|
||
|
|
||
|
# Projection Distances: Spectral norm (2-norm) `|| P_A - P_B ||_2`.
|
||
|
dist.projection.gmlm <- dist.projection(B.true, B.gmlm)
|
||
|
dist.projection.tnormal <- dist.projection(B.true, B.tnormal)
|
||
|
dist.projection.pca <- dist.projection(B.true, B.pca)
|
||
|
dist.projection.hopca <- dist.projection(B.true, B.hopca)
|
||
|
dist.projection.lpca <- dist.projection(B.true, B.lpca)
|
||
|
dist.projection.clpca <- dist.projection(B.true, B.clpca)
|
||
|
dist.projection.tsir <- dist.projection(B.true, B.tsir)
|
||
|
dist.projection.mgcca <- dist.projection(B.true, B.mgcca)
|
||
|
|
||
|
# Call CSV logger writing results to file
|
||
|
logger()
|
||
|
|
||
|
# print progress
|
||
|
cat(sprintf("sample size (%d): %d/%d - rep: %d/%d - elapsed: %.1f [s], total: %.0f [s]\n",
|
||
|
sample.size, which(sample.size == sample.sizes),
|
||
|
length(sample.sizes), rep, reps, elapsed, total.time))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
### read simulation results generate plots
|
||
|
if (!interactive()) { pdf(file = paste(base.name, "pdf", sep = ".")) }
|
||
|
|
||
|
sim <- read.csv(log.file)
|
||
|
|
||
|
|
||
|
plot.sim(sim, "dist.subspace", main = "Subspace Distance",
|
||
|
xlab = "Sample Size", ylab = "Distance")
|
||
|
|
||
|
# plot.sim(sim, "dist.projection", main = "Projection Distance",
|
||
|
# xlab = "Sample Size", ylab = "Distance")
|
||
|
|
||
|
plot.sim(sim, "time", main = "Runtime",
|
||
|
xlab = "Sample Size", ylab = "Time [s]",
|
||
|
ylim = c(0, max(sim[startsWith(names(sim), "time")])))
|