NSSC/Exercise_03/task01_4.py

75 lines
2.2 KiB
Python

# Task 1.4
import numpy as np
import scipy, scipy.sparse, scipy.linalg
from matplotlib import pyplot as plt
# plotting helper function
def plot(C, x, t, name):
plt.clf()
plt.plot(x, C)
plt.xlim([0, x[-1]])
plt.ylim([0, 1.2])
plt.title(f"{name} - time: {t: >12.0f}")
plt.savefig(f"plots/{name}_{plot.fignr:0>5}.png")
plot.fignr += 1
# set static variable as function attribute
plot.fignr = 1
# and initialize a figure
plt.figure(figsize = (8, 6), dpi = 100)
# Config
D = 1e-6 # diffusion coefficient
h = 1 # space domain (max x size)
T = 1e5 # solution end time
nx = 50 # nr of space discretization points
nt = 2000 # nr of time points
# derived constants
dx = h / (nx - 1) # space step size
dt = T / (nt - 1) # time step size
d = dt * D / dx**2 # stability/stepsize coefficient
# setup matrices for implicit update scheme `A C^n+1 = (2 I - A) C^n = B C^n`
# The matrix `A` is represented as a `3 x (nx - 1)` matrix as expected by
# `scipy.linalg.solve_banded` representing the 3 diagonals of the tridiagonal
# matrix `A`.
A = np.zeros((3, nx - 1))
# upper minor diagonal
A[0, 2:] = -d
# main diagonal
A[1, 0] = 1
A[1, 1:] = 1 + 2 * d
# and lower minor diagonal
A[2, :-2] = -d
A[2, -2] = -2 * d
# The right hand side matrix `B = 2 I - A` which is represented as a sparse
# matrix in diag. layout which allows for fast matrix vector multiplication
B = -A
B[1, ] += 2
B = scipy.sparse.spdiags(B, (1, 0, -1), B.shape[1], B.shape[1])
# set descritized space evaluation points `x` of `C`
x = np.linspace(0, h, nx)
# Set initial solution
C = np.zeros(nx)
C[0] = 1
C[-1] = C[-3] # (0 = 0)
for n in range(nt):
# generate roughly 400 plots
if n % (nt // 400) == 0:
plot(C, x, n * dt, "task01_4")
# update solution using the implicit schema
C[:-1] = scipy.linalg.solve_banded((1, 1), A, B @ C[:-1])
# set/enforce boundary conditions
C[0] = 1 # left Dirichlet (theoretically not needed)
C[-1] = C[-3] # right Neumann condition
# plot final state
plot(C, x, T, "task01_4")
# to convert generated image sequence to video use:
# $> ffmpeg -r 60 -i plots/task01_4_%05d.png -pix_fmt yuv420p video_1_4.mp4