Compare commits

...

5 Commits

8 changed files with 155 additions and 27 deletions

View File

@ -88,7 +88,7 @@ def energy(position, box_size):
# enforce expected shape
# (`scipy.optimize.minimize` drops shape information)
if len(position.shape) == 1:
position = position.reshape((position.shape[0] // 3, 3))
position = position.reshape((-1, 3))
# compute all pairwise position differences (all!)
diff = position[:, jnp.newaxis, :] - position
# extract only one of two distance combinations of non-equal particles
@ -122,16 +122,16 @@ def kinetic(velocity):
return (mass / 2.0) * (velocity**2).sum()
@jit
def step(position, velocity, acceleration, box_size, step_size):
def step(position, velocity, acceleration, box_size, delta_t):
"""
Performs a single Newton time step with `step_size` given system state
Performs a single Newton time step with `delta_t` given system state
through the current particle `position`, `velocity` and `acceleration`.
"""
# update position with a second order Taylor expantion
position += step_size * velocity + (0.5 * step_size**2) * acceleration
position += delta_t * velocity + (0.5 * delta_t**2) * acceleration
# compute new particle acceleration through Newtons second law of motion
acceleration_next = force(position, box_size) / mass
# update velocity with a finite mean approximation
velocity += (0.5 * step_size) * (acceleration + acceleration_next)
velocity += (0.5 * delta_t) * (acceleration + acceleration_next)
# updated state
return position, velocity, acceleration_next

View File

@ -59,7 +59,8 @@ from molecular_dynamics import dump, energy, force, mass
position = np.random.uniform(0.0, config.box_size, (config.nr_particles, 3))
# Sample particle velocities
sd = np.sqrt(scipy.constants.Boltzmann * config.temperature / mass)
K_b = scipy.constants.Boltzmann / scipy.constants.eV # [eV / K]
sd = np.sqrt(K_b * config.temperature / mass)
velocity = np.random.normal(0.0, sd, (config.nr_particles, 3))
# center velocities
velocity -= velocity.mean(axis = 0)

View File

@ -1,28 +1,42 @@
%% eulero forward DIrichlet
L=pi;
T=2;
f=@(x,t) 0*x.*t;
c1=@(t) 1+0*t;
c2=@(t) 0*t;
u0=@(x) 0*x;
D=0.5;
%uex=@(x,t) cos(x).*exp(t);
%% Euler forward Dirichlet
L = 1; % domain size (in the lecture notes this is denote h)
T = 2; % time limit (max time)
f = @(x,t) 0*x.*t; % rhs of the more general equation `u_t - d u_xx = f`
c1 = @(t) 1+0*t; % _right_ boundary condition
c2 = @(t) 0*t; % _left_ boundary condition
u0 = @(x) 0*x; % initial values
D = 0.5; % diffusion parameter `d` in `u_t - d u_xx = f`
%uex = @(x,t) cos(x).*exp(t);
N=10;
K=200;
[x,t,u]=Dirichlet_EA(L,N,T,K,c1,c2,f,u0,D);
N = 10; % nr. of _space_ discretization points
K = 200; % nr. of _time_ discretization points
[x, t, u] = Dirichlet_EA(L, N, T, K, c1, c2, f, u0, D);
figure(1)
for ii=1:K+1
plot(x,u(:,ii)');
xlim([0 L])
pause(0.05);
% Report stability condition `D Delta T / (Delta x)^2 > 0.5`
Delta_T = T / K;
Delta_x = L / N;
d = D * Delta_T / Delta_x^2;
fprintf("Stability Condition: 0.5 >= D * Delta_T / Delta_x^2 = %f\n", d)
if d > 0.5
fprintf("-> NOT Stable\n")
else
fprintf("-> Stable\n")
end
space=linspace(0,L,101);
time=linspace(0,T,201);
[xx,yy]=meshgrid(time,space);
%exsol=uex(yy,xx);
figure(1)
for ii = 1:K+1 % iterates time
hold on
plot(x, u(:, ii)');
xlim([0 L])
pause(0.05);
hold off
end
% 3D plot of space solution over time
space = linspace(0,L,101);
time = linspace(0,T,201);
[xx,yy] = meshgrid(time,space);
%exsol = uex(yy,xx);
figure(2)
mesh(t,x,u)
%figure(2)

63
Exercise_03/task01_1-2.py Normal file
View File

@ -0,0 +1,63 @@
# Task 1.1, 1.2
import numpy as np
from typing import Callable
from matplotlib import pyplot as plt
# Config
D = 1e-6 # diffusion coefficient
h = 1 # space domain (max x size)
T = 2e6 # solution end time
nx = 50 # nr of space discretization points
nt = 20000 # nr of time discretization points
# derived constants
dx = h / (nx - 1) # space step size
dt = T / (nt - 1) # time step size
d = dt * D / dx**2 # stability/stepsize coefficient
# report stability
if d > 0.5:
print("NOT Stable")
else:
print("Stable")
# explicit scheme integration for `u_t - D u_xx = 0` with boundary conditions
# enforced by `set_bounds` and initial conditions `initial`.
def integrate(*, name: str, initial: np.array, set_bounds: Callable[[np.array], None]) -> None:
C = initial
# Setup boundary conditions
set_bounds(C)
i = 0 # index for plot generation
plt.figure(figsize = (8, 6), dpi = 100)
for t in range(nt):
# every 400'th time step save a plot
if t % (nt // 400) == 0:
plt.clf()
plt.plot(np.linspace(0, h, nx), C)
plt.xlim([0, h])
plt.ylim([0, 1.2])
plt.savefig(f"plots/{name}_{i:0>5}.png")
i += 1
# update solution using the explicit schema
C[1:-1] += d * (C[2:] - 2 * C[1:-1] + C[:-2])
# update right Neumann BC
set_bounds(C)
# Subtask 1 boundary conditions (Dirichlet and Neumann)
def bounds_1(C):
C[0] = 1
C[-1] = C[-2]
# Subtask 2 boundary conditions (two Dirichlet)
def bounds_2(C):
C[0] = 1
C[-1] = 0
# run simulations
integrate(name = 'task01_1', initial = np.zeros(nx), set_bounds = bounds_1)
integrate(name = 'task01_2', initial = np.zeros(nx), set_bounds = bounds_2)
# to convert generated image sequence to video use:
# $> ffmpeg -r 60 -i plots/task01_1_%05d.png -pix_fmt yuv420p video_1_1.mp4
# $> ffmpeg -r 60 -i plots/task01_2_%05d.png -pix_fmt yuv420p video_1_2.mp4

50
Exercise_03/task01_3.py Normal file
View File

@ -0,0 +1,50 @@
# Task 1.3
import numpy as np
from typing import Callable
from matplotlib import pyplot as plt
# Config
D = 1e-6 # diffusion coefficient
h = 1 # space domain (max x size)
T = 2e6 # solution end time
nx = 50 # nr of space discretization points
nt = 20000 # nr of time discretization points
# derived constants
dx = h / (nx - 1) # space step size
dt = T / (nt - 1) # time step size
d = dt * D / dx**2 # stability/stepsize coefficient
# Setup implicit scheme equation matrix
T = (1 + 2 * d) * np.eye(nx) - d * np.eye(nx, k = 1) - d * np.eye(nx, k = -1)
# fix boundary condition equations
T[0, 0] = 1 # Left Dirichlet BC
T[0, 1] = 0
T[-1, -2] = 1 # Right Neumann BC
T[-1, -1] = 0
# Set initial solution
C = np.zeros(nx)
C[0] = 1
C[-1] = C[-2] # (0 = 0)
i = 0 # index for plot generation
plt.figure(figsize = (8, 6), dpi = 100)
for t in range(nt):
# every 400'th time step save a plot
if t % (nt // 400) == 0:
plt.clf()
plt.plot(np.linspace(0, h, nx), C)
plt.xlim([0, h])
plt.ylim([0, 1.2])
plt.savefig(f"plots/task01_3_{i:0>5}.png")
i += 1
# update solution using the explicit schema
C = np.linalg.solve(T, C)
# fix BC conditions (theoretically, they are set by the update but for
# stability reasons (numerical) we enforce the correct values)
C[0] = 1
C[-1] = C[-2]
# to convert generated image sequence to video use:
# $> ffmpeg -r 60 -i plots/task01_3_%05d.png -pix_fmt yuv420p video_1_3.mp4

BIN
Exercise_03/video_1_1.mp4 Normal file

Binary file not shown.

BIN
Exercise_03/video_1_2.mp4 Normal file

Binary file not shown.

BIN
Exercise_03/video_1_3.mp4 Normal file

Binary file not shown.