Abgabe
This commit is contained in:
parent
d13f1918a0
commit
eb4e741ebb
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
@ -0,0 +1,5 @@
|
|||
Group 1
|
||||
12134031, Bianchi Riccardo
|
||||
01128052, Kapla Daniel
|
||||
01630056, Kuen Jakob
|
||||
01620740, Müller David
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,12 @@
|
|||
module Parameters
|
||||
export k, hz, L, q, T, e, elₘ
|
||||
|
||||
k = 429.
|
||||
hz = 0.0005
|
||||
L = 0.01
|
||||
|
||||
q = 2000000.
|
||||
T = 293.
|
||||
c = 10.
|
||||
elₘ = [41,42,43,44,45,46,47,59,60,61,62,63,77,78,79,95]
|
||||
end
|
|
@ -0,0 +1,6 @@
|
|||
FEM solver
|
||||
|
||||
- programmed in Julia
|
||||
- run using `julia run.jl`
|
||||
- this generates output txt files in ./txt/ and plots in ./plots/ for all 5 variants
|
||||
- the script requires the Julia packages GeometryBasics, GLMakie for plotting, and Fmt (https://github.com/bicycle1885/Fmt.jl) for print_HTP functionality3
|
|
@ -0,0 +1,104 @@
|
|||
module FEM
|
||||
export Node, Element, stiffness, tri_tiles, gradient, center, normalize, p
|
||||
|
||||
include("./Parameters.jl")
|
||||
|
||||
using GeometryBasics
|
||||
using GeometryBasics.LinearAlgebra
|
||||
|
||||
struct Node
|
||||
x::Float64
|
||||
y::Float64
|
||||
index::UInt
|
||||
end
|
||||
|
||||
p(n::Node) = Point2f(n.x, n.y)
|
||||
|
||||
struct Element
|
||||
nodes::Vector{Node}
|
||||
a::Vector{Float64}
|
||||
b::Vector{Float64}
|
||||
c::Vector{Float64}
|
||||
Δ::Float64
|
||||
|
||||
function Element(n::Vector{Node})
|
||||
xs = map(nd->nd.x,n)
|
||||
ys = map(nd->nd.y,n)
|
||||
a = cross(xs, ys)
|
||||
b = cross(ys, ones(3))
|
||||
c = cross(ones(3), xs)
|
||||
Δ = dot(xs,b) / 2
|
||||
|
||||
new(n,a,b,c,Δ)
|
||||
end
|
||||
end
|
||||
|
||||
function stiffness(e::Element)::Matrix{Float64}
|
||||
# tensor product
|
||||
Hₑ = e.b .* e.b'
|
||||
Hₑ += e.c .* e.c'
|
||||
Hₑ *= Parameters.hz*Parameters.k/4e.Δ
|
||||
|
||||
return Hₑ
|
||||
end
|
||||
|
||||
function tri_tiles(L::Float64, divisions::Int, trapezoidal::Bool=false, biased::Bool=false, ring::Bool=false)::Tuple{Vector{Node}, Vector{Element}}
|
||||
nodes = Matrix{Node}(undef, divisions+1, divisions+1)
|
||||
|
||||
i = 1
|
||||
for y in 0:divisions
|
||||
for x in 0:divisions
|
||||
xₑ = L*x/divisions
|
||||
yₑ = L*y/divisions
|
||||
|
||||
if biased
|
||||
B = yₑ/2Parameters.L
|
||||
xₑ = xₑ*(xₑ*B/Parameters.L - B + 1)
|
||||
end
|
||||
|
||||
if trapezoidal
|
||||
xₑ *= 1 - 0.5*(y/divisions)
|
||||
end
|
||||
|
||||
if ring
|
||||
r = Parameters.L*(1 + x/divisions)
|
||||
θ = (π/4)*(y/divisions)
|
||||
|
||||
xₑ = r*cos(θ)
|
||||
yₑ = r*sin(θ)
|
||||
xₑ -= Parameters.L
|
||||
end
|
||||
|
||||
nodes[x+1,y+1] = Node(xₑ,yₑ,i)
|
||||
i += 1
|
||||
end
|
||||
end
|
||||
|
||||
elements = []
|
||||
|
||||
for y in 1:divisions
|
||||
for x in 1:divisions
|
||||
# lower/upper triangle
|
||||
push!(elements, Element([nodes[x,y], nodes[x+1,y], nodes[x,y+1]]))
|
||||
push!(elements, Element([nodes[x+1,y+1], nodes[x,y+1], nodes[x+1,y]]))
|
||||
end
|
||||
end
|
||||
|
||||
return vec(nodes), elements
|
||||
end
|
||||
|
||||
function gradient(e::Element, T::Vector{Float64})::Vec2f
|
||||
return Vec2f([
|
||||
e.b[1] e.b[2] e.b[3] ;
|
||||
e.c[1] e.c[2] e.c[3]
|
||||
] * [
|
||||
T[e.nodes[1].index]
|
||||
T[e.nodes[2].index]
|
||||
T[e.nodes[3].index]
|
||||
] / 2e.Δ)
|
||||
end
|
||||
|
||||
center(e::Element)::Point2f = Point2f(sum([n.x for n in e.nodes])/3.0, sum([n.y for n in e.nodes])/3.0)
|
||||
normalize(v::Vec2f)::Vec2f = v / sqrt(v[1]^2 + v[2]^2)
|
||||
|
||||
end
|
|
@ -0,0 +1,39 @@
|
|||
using Fmt
|
||||
|
||||
function print_HTP(H::Matrix{Float64}, T::Vector{Float64}, P::Vector{Float64}, filename="output.txt")
|
||||
# Print matrices to .txt-file (name of file = filename).
|
||||
# H... overall assembled stiffness matrix
|
||||
# T... nodal temperature vector
|
||||
# P... nodal force vector
|
||||
|
||||
# Make sure, that your system of equations is sorted by
|
||||
# ascending node numbers, i.e., N1 N2 ... N100.
|
||||
|
||||
open(filename, "w") do io
|
||||
write(io, "Stiffness matrix H: \n")
|
||||
|
||||
for row in H
|
||||
for col in row
|
||||
outline = f"{$col:+8.4e},"
|
||||
write(io, f"{$outline:11s}")
|
||||
end
|
||||
write(io, "\n")
|
||||
end
|
||||
|
||||
write(io, "Temperature T: \n")
|
||||
for row in T
|
||||
for col in row
|
||||
outline = f"{$col:+8.4e},"
|
||||
write(io, f"{$outline:11s} \n")
|
||||
end
|
||||
end
|
||||
|
||||
write(io, "Force vector P: \n")
|
||||
for row in P
|
||||
for col in row
|
||||
outline = f"{$col:+8.4e},"
|
||||
write(io, f"{$outline:11s} \n")
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,94 @@
|
|||
include("./fem.jl")
|
||||
include("./Parameters.jl")
|
||||
include("./print_HTP.jl")
|
||||
|
||||
using .FEM
|
||||
using GLMakie
|
||||
using Makie.GeometryBasics
|
||||
|
||||
@enum Variation BASIC V1 V2 V3 V4_div V4_mul
|
||||
|
||||
function solve(name::String, variation::Variation)
|
||||
div = 9
|
||||
H = zeros(Float64,(div+1)^2, (div+1)^2)
|
||||
|
||||
(nodes, elements) = tri_tiles(Parameters.L, div, variation==V1, variation==V2, variation==V3)
|
||||
|
||||
for (index, el) in enumerate(elements)
|
||||
Hₑ = stiffness(el)
|
||||
|
||||
if variation == V4_div && index in Parameters.elₘ
|
||||
Hₑ /= Parameters.c
|
||||
elseif variation == V4_mul && index in Parameters.elₘ
|
||||
Hₑ *= Parameters.c
|
||||
end
|
||||
|
||||
for i in 1:3
|
||||
for j in 1:3
|
||||
H[el.nodes[i].index, el.nodes[j].index] += Hₑ[i,j]
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
P = zeros(Float64, 90)
|
||||
|
||||
# impose neumann conditions on top edge
|
||||
# adapted from https://mathoverflow.net/questions/5085/how-to-apply-neuman-boundary-condition-to-finite-element-method-problems
|
||||
# maybe check if this actually makes sense
|
||||
|
||||
nᵧ = -Parameters.q / Parameters.k
|
||||
# skip=2 since only every second element has a edge along the bottom: ◺◹
|
||||
for ∂_el in elements[1:2:18]
|
||||
n1 = ∂_el.nodes[1]
|
||||
n2 = ∂_el.nodes[2]
|
||||
l = abs(n2.x - n1.x)
|
||||
P[n1.index] += nᵧ*l/2
|
||||
P[n2.index] += nᵧ*l/2
|
||||
end
|
||||
|
||||
rhs = P - H[1:90,91:100]*fill(Parameters.T, 10,1)
|
||||
T = vec(H[1:90,1:90]\rhs)
|
||||
append!(T, fill(Parameters.T, 10))
|
||||
|
||||
reaction_forces = H[91:100,:]*T
|
||||
|
||||
centers = center.(elements)
|
||||
|
||||
gradients = map(el -> gradient(el, T), elements)
|
||||
flux = gradients .* -1
|
||||
|
||||
norm = maximum(map(g-> sqrt(g[1]^2 + g[2]^2), gradients))/(Parameters.L/div)*2.5
|
||||
|
||||
gradients ./= norm
|
||||
flux ./= norm
|
||||
|
||||
set_theme!(theme_black())
|
||||
f = Figure(resolution = (1536, 1024))
|
||||
|
||||
tris = map(e->Polygon([p(e.nodes[1]), p(e.nodes[2]), p(e.nodes[3])]), elements)
|
||||
poly(f[1, 1], tris, color=:transparent, linestyle=:solid, strokewidth=0.8, strokecolor=:white, transparency=true)
|
||||
|
||||
xs = map(n->n.x, nodes)
|
||||
ys = map(n->n.y, nodes)
|
||||
|
||||
xs = reshape(xs, (div+1, div+1))
|
||||
ys = reshape(ys, (div+1, div+1))
|
||||
Ts = reshape(T, (div+1, div+1))
|
||||
|
||||
surface(f[2, 1], xs, ys, Ts, colormap=:matter, axis=(type=Axis3,))
|
||||
|
||||
contour(f[1:2,2:3], map(n->n.x,nodes), map(n->n.y,nodes), T, levels=16, colormap=:matter)
|
||||
arrows!(f[1:2,2:3], centers, gradients, arrowcolor=:red, linecolor=:red)
|
||||
arrows!(f[1:2,2:3], centers, flux, arrowcolor=:blue, linecolor=:blue)
|
||||
|
||||
save("plots/$name.png", current_figure())
|
||||
|
||||
# print_HTP(H, T, P, "txt/htp_$name.txt")
|
||||
end
|
||||
|
||||
solve("baseline", BASIC)
|
||||
solve("variation1", V1)
|
||||
solve("variation2", V2)
|
||||
solve("variation3", V3)
|
||||
solve("variation4_div", V4_div)
|
||||
solve("variation4_mul", V4_mul)
|
Loading…
Reference in New Issue