fix: kinetic energy,

wip: task04
This commit is contained in:
Daniel Kapla 2022-04-12 18:04:26 +02:00
parent 1ff5c11866
commit cccb402d65
4 changed files with 108 additions and 38 deletions

View File

@ -119,7 +119,7 @@ def kinetic(velocity):
"""
Computes the kenetic energy given a systems `velocity` state.
"""
return (mass / 2.0) * jnp.linalg.norm(velocity, axis = 1).sum()
return (mass / 2.0) * (velocity**2).sum()
@jit
def step(position, velocity, acceleration, box_size, step_size):

View File

@ -99,15 +99,3 @@ if config.verbose:
print( "Final Mean Forces: {:.4e} {:.4e} {:.4e}".format(*final_mean_forces))
print(f"Final Mean ||Forces||: {final_mean_fnorm:.4e}")
print(f"Done: saved inital state to '{config.output}'")
# # if a plot path is provided
# if not config.plot is None:
# from mpl_toolkits import mplot3d
# import matplotlib.pyplot as plt
# # new plot with 3D axis
# plt.figure()
# ax = plt.axes(projection = "3d")
# # create 3D position scatter plot
# ax.scatter(position[:, 0], position[:, 1], position[:, 2])
# # and save to file
# plt.savefig(config.plot)

View File

@ -10,6 +10,15 @@ arg_parser = OptionParser(usage = usage)
arg_parser.add_option("-i", "--input", action = "store", type = str,
dest = "input", default = None,
help = "input file path (required!)")
arg_parser.add_option("-A", "--outputA", action = "store", type = str,
dest = "outputA", default = "task04A.txt",
help = "first output file path (default: 'task04A.txt')")
arg_parser.add_option("-B", "--outputB", action = "store", type = str,
dest = "outputB", default = "task04B.txt",
help = "second output file path (default: 'task04B.txt')")
arg_parser.add_option("-s", "--cdf_sample_count", action = "store", type = int,
dest = "cdf_sample_count", default = 5,
help = "Radius interval sample count for CDF estimate (default: 5)")
arg_parser.add_option("-a", "--animate", action = "store_true",
dest = "animate", default = False,
help = "creates an trajectory animation of the states in the input file")
@ -31,36 +40,109 @@ else:
exit(-1)
################################################################################
### task 3 / trajectory generation ###
### task 4 / post processing ###
################################################################################
# note, load module _after_ processing script parameters (no need to load all
# of the heavy numeric modules if only usage or alike is needed)
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from molecular_dynamics import iter_load, energy, kinetic
if config.animate:
# new plot with 3D axis
fig = plt.figure()
ax = fig.add_subplot(111, projection = "3d")
count = 0
# counte the number of states (system snapshots) in the input file
nr_states = 0
# first output file and collect some info used in the next analysis!
with open(config.outputA, "w") as output:
# iterate over all state snapshots stored in the `config.input` file
for (position, velocity), box_size in iter_load(config.input):
count += 1
nr_states += 1
# compute potneital and kinetic energy for current snapshot
e_pot = energy(position, box_size)
e_kin = kinetic(velocity)
print(f"{count: >3} - {e_pot:10.5e} {e_kin:10.5e} {(e_pot + e_kin):10.5e}")
# energy results
print(e_pot, e_kin, file = output)
# report file path
print(f"Saved energy change to '{config.outputA}'")
if config.animate:
ax.cla()
plt.title(f"time step {count}")
plt.xlim([0, box_size])
plt.ylim([0, box_size])
ax.set_zlim([0, box_size])
# create 3D position scatter plot
position = np.mod(position, box_size)
ax.scatter(position[:, 0], position[:, 1], position[:, 2])
# # and save to file
# plt.savefig(config.plot)
plt.pause(0.01)
# CDF radius sample points (`box_size` known from last loop)
radii = np.linspace(0, box_size / 2.0, config.cdf_sample_count)[np.newaxis, :]
# radius Commulative Distribution Function estimate
CDF = np.zeros((config.cdf_sample_count, ))
# extract only one of two distance combinations of non-equal particles
lower_tri = np.tril_indices(position.shape[0], k = -1)
# maximum distance two particles (in folded space) can be apart
max_dist = box_size / 2.0
# second iteration to estimate pairwise distance CDF
for i, ((position, velocity), box_size) in enumerate(iter_load(config.input)):
# ignore the first 25% (just keep it simple)
if 4 * i < nr_states:
continue
# magic for all particle pair distances
diff = position[:, np.newaxis, :] - position
diff = diff[lower_tri[0], lower_tri[1], :]
# fold space in all directions. The `max_dist` is the maximum distance
# in the folded space untill the distance through the folded space
# border is smaller than inside the box. 3-axis parallel fold
diff = np.mod(diff + max_dist, box_size) - max_dist
# count nr particles pairs with distance smaller than r
dist = np.linalg.norm(diff, axis = 1)
# accumulate per timepoint partial mean estimates of the CDF
CDF += np.mean(dist[:, np.newaxis] < radii, axis = 0)
# final division by timesteps as mean over pairs and time.
CDF /= nr_states
# store the CDF estimate to the second file
with open(config.outputB, "w") as output:
for r, cdf in zip(radii.ravel(), CDF.ravel()):
print(r, cdf, file = output)
# report file path
print(f"Saved radius CDF estimate to '{config.outputB}'")
# import matplotlib.pyplot as plt
# from mpl_toolkits import mplot3d
# if config.animate:
# # new plot with 3D axis
# count = 0
# fig = plt.figure()
# ax = fig.add_subplot(111, projection = "3d")
# for (position, velocity), box_size in iter_load(config.input):
# e_pot = energy(position, box_size)
# e_kin = kinetic(velocity)
# print(f"{e_pot:10.5e} {e_kin:10.5e} {(e_pot + e_kin):10.5e}")
# if config.animate:
# count += 1
# ax.cla()
# plt.title(f"time step {count}")
# plt.xlim([0, box_size])
# plt.ylim([0, box_size])
# ax.set_zlim([0, box_size])
# # create 3D position scatter plot
# position = np.mod(position, box_size)
# ax.scatter(position[:, 0], position[:, 1], position[:, 2])
# # # and save to file
# # plt.savefig(config.plot)
# plt.pause(0.01)
# import numpy as np
# import matplotlib.pyplot as plt
# from mpl_toolkits import mplot3d
# from molecular_dynamics import load, energy, kinetic
# (position, velocity), box_size = load("task02.xyz"):
# fig = plt.figure()
# ax = fig.add_subplot(111, projection = "3d")
# ax.cla()
# plt.xlim([0, box_size])
# plt.ylim([0, box_size])
# ax.set_zlim([0, box_size])
# # create 3D position scatter plot
# position = np.mod(position, box_size)
# ax.scatter(position[:, 0], position[:, 1], position[:, 2])

BIN
Exercise_02_Assignment.pdf Normal file

Binary file not shown.