add: task 1, subtask 1-3 python reimplementation
This commit is contained in:
parent
dad2f0151f
commit
cc3fa78db6
|
@ -1,24 +1,38 @@
|
|||
%% eulero forward DIrichlet
|
||||
L=pi;
|
||||
T=2;
|
||||
f=@(x,t) 0*x.*t;
|
||||
c1=@(t) 1+0*t;
|
||||
c2=@(t) 0*t;
|
||||
u0=@(x) 0*x;
|
||||
D=0.5;
|
||||
%% Euler forward Dirichlet
|
||||
L = 1; % domain size (in the lecture notes this is denote h)
|
||||
T = 2; % time limit (max time)
|
||||
f = @(x,t) 0*x.*t; % rhs of the more general equation `u_t - d u_xx = f`
|
||||
c1 = @(t) 1+0*t; % _right_ boundary condition
|
||||
c2 = @(t) 0*t; % _left_ boundary condition
|
||||
u0 = @(x) 0*x; % initial values
|
||||
D = 0.5; % diffusion parameter `d` in `u_t - d u_xx = f`
|
||||
%uex = @(x,t) cos(x).*exp(t);
|
||||
|
||||
N=10;
|
||||
K=200;
|
||||
N = 10; % nr. of _space_ discretization points
|
||||
K = 200; % nr. of _time_ discretization points
|
||||
[x, t, u] = Dirichlet_EA(L, N, T, K, c1, c2, f, u0, D);
|
||||
|
||||
% Report stability condition `D Delta T / (Delta x)^2 > 0.5`
|
||||
Delta_T = T / K;
|
||||
Delta_x = L / N;
|
||||
d = D * Delta_T / Delta_x^2;
|
||||
fprintf("Stability Condition: 0.5 >= D * Delta_T / Delta_x^2 = %f\n", d)
|
||||
if d > 0.5
|
||||
fprintf("-> NOT Stable\n")
|
||||
else
|
||||
fprintf("-> Stable\n")
|
||||
end
|
||||
|
||||
figure(1)
|
||||
for ii=1:K+1
|
||||
for ii = 1:K+1 % iterates time
|
||||
hold on
|
||||
plot(x, u(:, ii)');
|
||||
xlim([0 L])
|
||||
pause(0.05);
|
||||
hold off
|
||||
end
|
||||
|
||||
% 3D plot of space solution over time
|
||||
space = linspace(0,L,101);
|
||||
time = linspace(0,T,201);
|
||||
[xx,yy] = meshgrid(time,space);
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
# Task 1.1, 1.2
|
||||
import numpy as np
|
||||
from typing import Callable
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
# Config
|
||||
D = 1e-6 # diffusion coefficient
|
||||
h = 1 # space domain (max x size)
|
||||
T = 2e6 # solution end time
|
||||
nx = 50 # nr of space discretization points
|
||||
nt = 20000 # nr of time discretization points
|
||||
|
||||
# derived constants
|
||||
dx = h / (nx - 1) # space step size
|
||||
dt = T / (nt - 1) # time step size
|
||||
d = dt * D / dx**2 # stability/stepsize coefficient
|
||||
|
||||
# report stability
|
||||
if d > 0.5:
|
||||
print("NOT Stable")
|
||||
else:
|
||||
print("Stable")
|
||||
|
||||
# explicit scheme integration for `u_t - D u_xx = 0` with boundary conditions
|
||||
# enforced by `set_bounds` and initial conditions `initial`.
|
||||
def integrate(*, name: str, initial: np.array, set_bounds: Callable[[np.array], None]) -> None:
|
||||
C = initial
|
||||
# Setup boundary conditions
|
||||
set_bounds(C)
|
||||
|
||||
i = 0 # index for plot generation
|
||||
plt.figure(figsize = (8, 6), dpi = 100)
|
||||
for t in range(nt):
|
||||
# every 400'th time step save a plot
|
||||
if t % (nt // 400) == 0:
|
||||
plt.clf()
|
||||
plt.plot(np.linspace(0, h, nx), C)
|
||||
plt.xlim([0, h])
|
||||
plt.ylim([0, 1.2])
|
||||
plt.savefig(f"plots/{name}_{i:0>5}.png")
|
||||
i += 1
|
||||
# update solution using the explicit schema
|
||||
C[1:-1] += d * (C[2:] - 2 * C[1:-1] + C[:-2])
|
||||
# update right Neumann BC
|
||||
set_bounds(C)
|
||||
|
||||
# Subtask 1 boundary conditions (Dirichlet and Neumann)
|
||||
def bounds_1(C):
|
||||
C[0] = 1
|
||||
C[-1] = C[-2]
|
||||
|
||||
# Subtask 2 boundary conditions (two Dirichlet)
|
||||
def bounds_2(C):
|
||||
C[0] = 1
|
||||
C[-1] = 0
|
||||
|
||||
# run simulations
|
||||
integrate(name = 'task01_1', initial = np.zeros(nx), set_bounds = bounds_1)
|
||||
integrate(name = 'task01_2', initial = np.zeros(nx), set_bounds = bounds_2)
|
||||
|
||||
# to convert generated image sequence to video use:
|
||||
# $> ffmpeg -r 60 -i plots/task01_1_%05d.png -pix_fmt yuv420p video_1_1.mp4
|
||||
# $> ffmpeg -r 60 -i plots/task01_2_%05d.png -pix_fmt yuv420p video_1_2.mp4
|
|
@ -0,0 +1,50 @@
|
|||
# Task 1.3
|
||||
import numpy as np
|
||||
from typing import Callable
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
# Config
|
||||
D = 1e-6 # diffusion coefficient
|
||||
h = 1 # space domain (max x size)
|
||||
T = 2e6 # solution end time
|
||||
nx = 50 # nr of space discretization points
|
||||
nt = 20000 # nr of time discretization points
|
||||
|
||||
# derived constants
|
||||
dx = h / (nx - 1) # space step size
|
||||
dt = T / (nt - 1) # time step size
|
||||
d = dt * D / dx**2 # stability/stepsize coefficient
|
||||
|
||||
# Setup implicit scheme equation matrix
|
||||
T = (1 + 2 * d) * np.eye(nx) - d * np.eye(nx, k = 1) - d * np.eye(nx, k = -1)
|
||||
# fix boundary condition equations
|
||||
T[0, 0] = 1 # Left Dirichlet BC
|
||||
T[0, 1] = 0
|
||||
T[-1, -2] = 1 # Right Neumann BC
|
||||
T[-1, -1] = 0
|
||||
|
||||
# Set initial solution
|
||||
C = np.zeros(nx)
|
||||
C[0] = 1
|
||||
C[-1] = C[-2] # (0 = 0)
|
||||
|
||||
i = 0 # index for plot generation
|
||||
plt.figure(figsize = (8, 6), dpi = 100)
|
||||
for t in range(nt):
|
||||
# every 400'th time step save a plot
|
||||
if t % (nt // 400) == 0:
|
||||
plt.clf()
|
||||
plt.plot(np.linspace(0, h, nx), C)
|
||||
plt.xlim([0, h])
|
||||
plt.ylim([0, 1.2])
|
||||
plt.savefig(f"plots/task01_3_{i:0>5}.png")
|
||||
i += 1
|
||||
# update solution using the explicit schema
|
||||
C = np.linalg.solve(T, C)
|
||||
# fix BC conditions (theoretically, they are set by the update but for
|
||||
# stability reasons (numerical) we enforce the correct values)
|
||||
C[0] = 1
|
||||
C[-1] = C[-2]
|
||||
|
||||
# to convert generated image sequence to video use:
|
||||
# $> ffmpeg -r 60 -i plots/task01_3_%05d.png -pix_fmt yuv420p video_1_3.mp4
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue