add: task 1, subtask 1-3 python reimplementation
This commit is contained in:
parent
dad2f0151f
commit
cc3fa78db6
|
@ -1,28 +1,42 @@
|
||||||
%% eulero forward DIrichlet
|
%% Euler forward Dirichlet
|
||||||
L=pi;
|
L = 1; % domain size (in the lecture notes this is denote h)
|
||||||
T=2;
|
T = 2; % time limit (max time)
|
||||||
f=@(x,t) 0*x.*t;
|
f = @(x,t) 0*x.*t; % rhs of the more general equation `u_t - d u_xx = f`
|
||||||
c1=@(t) 1+0*t;
|
c1 = @(t) 1+0*t; % _right_ boundary condition
|
||||||
c2=@(t) 0*t;
|
c2 = @(t) 0*t; % _left_ boundary condition
|
||||||
u0=@(x) 0*x;
|
u0 = @(x) 0*x; % initial values
|
||||||
D=0.5;
|
D = 0.5; % diffusion parameter `d` in `u_t - d u_xx = f`
|
||||||
%uex=@(x,t) cos(x).*exp(t);
|
%uex = @(x,t) cos(x).*exp(t);
|
||||||
|
|
||||||
N=10;
|
N = 10; % nr. of _space_ discretization points
|
||||||
K=200;
|
K = 200; % nr. of _time_ discretization points
|
||||||
[x,t,u]=Dirichlet_EA(L,N,T,K,c1,c2,f,u0,D);
|
[x, t, u] = Dirichlet_EA(L, N, T, K, c1, c2, f, u0, D);
|
||||||
|
|
||||||
figure(1)
|
% Report stability condition `D Delta T / (Delta x)^2 > 0.5`
|
||||||
for ii=1:K+1
|
Delta_T = T / K;
|
||||||
plot(x,u(:,ii)');
|
Delta_x = L / N;
|
||||||
xlim([0 L])
|
d = D * Delta_T / Delta_x^2;
|
||||||
pause(0.05);
|
fprintf("Stability Condition: 0.5 >= D * Delta_T / Delta_x^2 = %f\n", d)
|
||||||
|
if d > 0.5
|
||||||
|
fprintf("-> NOT Stable\n")
|
||||||
|
else
|
||||||
|
fprintf("-> Stable\n")
|
||||||
end
|
end
|
||||||
|
|
||||||
space=linspace(0,L,101);
|
figure(1)
|
||||||
time=linspace(0,T,201);
|
for ii = 1:K+1 % iterates time
|
||||||
[xx,yy]=meshgrid(time,space);
|
hold on
|
||||||
%exsol=uex(yy,xx);
|
plot(x, u(:, ii)');
|
||||||
|
xlim([0 L])
|
||||||
|
pause(0.05);
|
||||||
|
hold off
|
||||||
|
end
|
||||||
|
|
||||||
|
% 3D plot of space solution over time
|
||||||
|
space = linspace(0,L,101);
|
||||||
|
time = linspace(0,T,201);
|
||||||
|
[xx,yy] = meshgrid(time,space);
|
||||||
|
%exsol = uex(yy,xx);
|
||||||
figure(2)
|
figure(2)
|
||||||
mesh(t,x,u)
|
mesh(t,x,u)
|
||||||
%figure(2)
|
%figure(2)
|
||||||
|
|
|
@ -0,0 +1,63 @@
|
||||||
|
# Task 1.1, 1.2
|
||||||
|
import numpy as np
|
||||||
|
from typing import Callable
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
# Config
|
||||||
|
D = 1e-6 # diffusion coefficient
|
||||||
|
h = 1 # space domain (max x size)
|
||||||
|
T = 2e6 # solution end time
|
||||||
|
nx = 50 # nr of space discretization points
|
||||||
|
nt = 20000 # nr of time discretization points
|
||||||
|
|
||||||
|
# derived constants
|
||||||
|
dx = h / (nx - 1) # space step size
|
||||||
|
dt = T / (nt - 1) # time step size
|
||||||
|
d = dt * D / dx**2 # stability/stepsize coefficient
|
||||||
|
|
||||||
|
# report stability
|
||||||
|
if d > 0.5:
|
||||||
|
print("NOT Stable")
|
||||||
|
else:
|
||||||
|
print("Stable")
|
||||||
|
|
||||||
|
# explicit scheme integration for `u_t - D u_xx = 0` with boundary conditions
|
||||||
|
# enforced by `set_bounds` and initial conditions `initial`.
|
||||||
|
def integrate(*, name: str, initial: np.array, set_bounds: Callable[[np.array], None]) -> None:
|
||||||
|
C = initial
|
||||||
|
# Setup boundary conditions
|
||||||
|
set_bounds(C)
|
||||||
|
|
||||||
|
i = 0 # index for plot generation
|
||||||
|
plt.figure(figsize = (8, 6), dpi = 100)
|
||||||
|
for t in range(nt):
|
||||||
|
# every 400'th time step save a plot
|
||||||
|
if t % (nt // 400) == 0:
|
||||||
|
plt.clf()
|
||||||
|
plt.plot(np.linspace(0, h, nx), C)
|
||||||
|
plt.xlim([0, h])
|
||||||
|
plt.ylim([0, 1.2])
|
||||||
|
plt.savefig(f"plots/{name}_{i:0>5}.png")
|
||||||
|
i += 1
|
||||||
|
# update solution using the explicit schema
|
||||||
|
C[1:-1] += d * (C[2:] - 2 * C[1:-1] + C[:-2])
|
||||||
|
# update right Neumann BC
|
||||||
|
set_bounds(C)
|
||||||
|
|
||||||
|
# Subtask 1 boundary conditions (Dirichlet and Neumann)
|
||||||
|
def bounds_1(C):
|
||||||
|
C[0] = 1
|
||||||
|
C[-1] = C[-2]
|
||||||
|
|
||||||
|
# Subtask 2 boundary conditions (two Dirichlet)
|
||||||
|
def bounds_2(C):
|
||||||
|
C[0] = 1
|
||||||
|
C[-1] = 0
|
||||||
|
|
||||||
|
# run simulations
|
||||||
|
integrate(name = 'task01_1', initial = np.zeros(nx), set_bounds = bounds_1)
|
||||||
|
integrate(name = 'task01_2', initial = np.zeros(nx), set_bounds = bounds_2)
|
||||||
|
|
||||||
|
# to convert generated image sequence to video use:
|
||||||
|
# $> ffmpeg -r 60 -i plots/task01_1_%05d.png -pix_fmt yuv420p video_1_1.mp4
|
||||||
|
# $> ffmpeg -r 60 -i plots/task01_2_%05d.png -pix_fmt yuv420p video_1_2.mp4
|
|
@ -0,0 +1,50 @@
|
||||||
|
# Task 1.3
|
||||||
|
import numpy as np
|
||||||
|
from typing import Callable
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
# Config
|
||||||
|
D = 1e-6 # diffusion coefficient
|
||||||
|
h = 1 # space domain (max x size)
|
||||||
|
T = 2e6 # solution end time
|
||||||
|
nx = 50 # nr of space discretization points
|
||||||
|
nt = 20000 # nr of time discretization points
|
||||||
|
|
||||||
|
# derived constants
|
||||||
|
dx = h / (nx - 1) # space step size
|
||||||
|
dt = T / (nt - 1) # time step size
|
||||||
|
d = dt * D / dx**2 # stability/stepsize coefficient
|
||||||
|
|
||||||
|
# Setup implicit scheme equation matrix
|
||||||
|
T = (1 + 2 * d) * np.eye(nx) - d * np.eye(nx, k = 1) - d * np.eye(nx, k = -1)
|
||||||
|
# fix boundary condition equations
|
||||||
|
T[0, 0] = 1 # Left Dirichlet BC
|
||||||
|
T[0, 1] = 0
|
||||||
|
T[-1, -2] = 1 # Right Neumann BC
|
||||||
|
T[-1, -1] = 0
|
||||||
|
|
||||||
|
# Set initial solution
|
||||||
|
C = np.zeros(nx)
|
||||||
|
C[0] = 1
|
||||||
|
C[-1] = C[-2] # (0 = 0)
|
||||||
|
|
||||||
|
i = 0 # index for plot generation
|
||||||
|
plt.figure(figsize = (8, 6), dpi = 100)
|
||||||
|
for t in range(nt):
|
||||||
|
# every 400'th time step save a plot
|
||||||
|
if t % (nt // 400) == 0:
|
||||||
|
plt.clf()
|
||||||
|
plt.plot(np.linspace(0, h, nx), C)
|
||||||
|
plt.xlim([0, h])
|
||||||
|
plt.ylim([0, 1.2])
|
||||||
|
plt.savefig(f"plots/task01_3_{i:0>5}.png")
|
||||||
|
i += 1
|
||||||
|
# update solution using the explicit schema
|
||||||
|
C = np.linalg.solve(T, C)
|
||||||
|
# fix BC conditions (theoretically, they are set by the update but for
|
||||||
|
# stability reasons (numerical) we enforce the correct values)
|
||||||
|
C[0] = 1
|
||||||
|
C[-1] = C[-2]
|
||||||
|
|
||||||
|
# to convert generated image sequence to video use:
|
||||||
|
# $> ffmpeg -r 60 -i plots/task01_3_%05d.png -pix_fmt yuv420p video_1_3.mp4
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue