add: suport for successive reduction dimension d reduction
This commit is contained in:
parent
a673b50c7a
commit
e985e99432
|
@ -1,6 +1,7 @@
|
|||
# Generated by roxygen2: do not edit by hand
|
||||
|
||||
S3method(coef,nnsdr)
|
||||
S3method(predict,nnsdr)
|
||||
S3method(summary,nnsdr)
|
||||
export(dataset)
|
||||
export(dist.grassmann)
|
||||
|
|
|
@ -1,18 +1,12 @@
|
|||
#' Extracts the OPG or refined reduction coefficients from an nnsdr class instance
|
||||
#'
|
||||
#' @param object nnsdr class instance
|
||||
#' @param type specifies if the OPG or Refinement estimate is requested.
|
||||
#' One of `Refinement` or `OPG`, default is `Refinement`.
|
||||
#' @param ... ignored.
|
||||
#' @param ... Additional parameters passed down to `object$coef`.
|
||||
#'
|
||||
#' @return Matrix
|
||||
#'
|
||||
#' @method coef nnsdr
|
||||
#' @export
|
||||
coef.nnsdr <- function(object, type, ...) {
|
||||
if (missing(type)) {
|
||||
object$coef()
|
||||
} else {
|
||||
object$coef(type)
|
||||
}
|
||||
coef.nnsdr <- function(object, ...) {
|
||||
object$coef(...)
|
||||
}
|
||||
|
|
|
@ -107,7 +107,7 @@ nnsdr <- setRefClass('nnsdr',
|
|||
nn.ref = 'ANY',
|
||||
history.opg = 'ANY',
|
||||
history.ref = 'ANY',
|
||||
B.opg = 'ANY',
|
||||
OPG = 'ANY',
|
||||
B.ref = 'ANY',
|
||||
history = function() {
|
||||
if (is.null(.self$history.opg))
|
||||
|
@ -141,29 +141,35 @@ nnsdr <- setRefClass('nnsdr',
|
|||
|
||||
methods = list(
|
||||
initialize = function(input_shapes, d, output_shape = 1L, ...) {
|
||||
# Set configuration.
|
||||
.self$config <- c(list(
|
||||
# Create config.
|
||||
.config <- c(list(
|
||||
input_shapes = input_shapes,
|
||||
d = as.integer(d),
|
||||
output_shape = output_shape
|
||||
), list(...))
|
||||
# Dimensions added later (alows multiple d's)
|
||||
d <- sort(as.integer(d), decreasing = TRUE)
|
||||
|
||||
# Build OPG (Step 1) and Refinement (Step 2) Neuronal Networks
|
||||
.self$nn.opg <- do.call(build.MLP, c(.self$config, list(
|
||||
.self$nn.opg <- do.call(build.MLP, c(.config, list(
|
||||
name = 'OPG', add_reduction = FALSE
|
||||
)))
|
||||
.self$nn.ref <- do.call(build.MLP, c(.self$config, list(
|
||||
name = 'Refinement', add_reduction = TRUE
|
||||
.self$nn.ref <- Map(function(d) {
|
||||
do.call(build.MLP, c(.config, list(
|
||||
name = 'Refinement', add_reduction = TRUE, d = d
|
||||
)))
|
||||
}, d)
|
||||
|
||||
# Set config (including dimension(s)) after `build.MLP`
|
||||
.self$config <- c(list(d = d), .config)
|
||||
|
||||
# Set initial history field values. If and only if the `history.*`
|
||||
# fields are `NULL`, then the Nets are NOT trained.
|
||||
.self$history.opg <- NULL
|
||||
.self$history.ref <- NULL
|
||||
|
||||
# Set (not jet available) reduction estimates
|
||||
.self$B.opg <- NULL
|
||||
.self$B.ref <- NULL
|
||||
# Set (not jet available) OPG directions, the OPG estimate for
|
||||
# reduction dimension `d` is then `.self$OPG[, 1:d]`.
|
||||
.self$OPG <- NULL
|
||||
},
|
||||
|
||||
fit = function(inputs, output, epochs = 1L, batch_size = 32L,
|
||||
|
@ -196,14 +202,14 @@ nnsdr <- setRefClass('nnsdr',
|
|||
out <- .self$nn.opg(inputs)
|
||||
})
|
||||
G <- as.matrix(tape$gradient(out, inputs[[1]]))
|
||||
B <- eigen(var(G), symmetric = TRUE)$vectors
|
||||
B <- B[, 1:.self$config$d, drop = FALSE]
|
||||
.self$B.opg <- B
|
||||
.self$OPG <- eigen(var(G), symmetric = TRUE)$vectors
|
||||
|
||||
# Check for need to initialize the Refinement Net.
|
||||
# Check for need to initialize the Refinement Nets.
|
||||
if (is.null(.self$history.ref)) {
|
||||
# Get OPG estimate for max reduction dimension
|
||||
B <- .self$OPG[, seq_len(.self$config$d[1]), drop = FALSE]
|
||||
# Set Reduction layer
|
||||
.self$nn.ref$get_layer('reduction')$set_weights(list(B))
|
||||
.self$nn.ref[[1]]$get_layer('reduction')$set_weights(list(B))
|
||||
|
||||
# Check initialization (for random keep random initialization)
|
||||
if (initializer == 'fromOPG') {
|
||||
|
@ -214,7 +220,7 @@ nnsdr <- setRefClass('nnsdr',
|
|||
W[-(1:nrow(B)), , drop = FALSE]
|
||||
)
|
||||
b <- as.array(.self$nn.opg$get_layer('hidden1')$bias)
|
||||
.self$nn.ref$get_layer('hidden1')$set_weights(list(W, b))
|
||||
.self$nn.ref[[1]]$get_layer('hidden1')$set_weights(list(W, b))
|
||||
# Get layer names with weights to be initialized from `nn.opg`
|
||||
# These are the output layer and all hidden layers except the first
|
||||
layer.names <- Filter(function(name) {
|
||||
|
@ -226,44 +232,108 @@ nnsdr <- setRefClass('nnsdr',
|
|||
startsWith(name, 'hidden')
|
||||
}
|
||||
}, lapply(.self$nn.opg$layers, `[[`, 'name'))
|
||||
# Copy `nn.opg` weights to `nn.ref`
|
||||
# Copy `nn.opg` weights to first `nn.ref`
|
||||
for (name in layer.names) {
|
||||
.self$nn.ref$get_layer(name)$set_weights(lapply(
|
||||
.self$nn.ref[[1]]$get_layer(name)$set_weights(lapply(
|
||||
.self$nn.opg$get_layer(name)$weights, as.array
|
||||
))
|
||||
}
|
||||
}
|
||||
} else if (verbose > 0) {
|
||||
cat("Refinement Net already trained -> continue training.\n")
|
||||
}
|
||||
|
||||
# Fit (or continue fitting) the Refinement Net.
|
||||
hist <- .self$nn.ref$fit(inputs, output, ...,
|
||||
# Now train all but the smallest Refinement Nets and move
|
||||
# weight to the next smaller net.
|
||||
for (i in seq_len(length(.self$nn.ref) - 1)) {
|
||||
# Train current Net
|
||||
hist <- .self$nn.ref[[i]]$fit(inputs, output, ...,
|
||||
epochs = as.integer(tail(epochs, 1)),
|
||||
batch_size = as.integer(tail(batch_size, 1)),
|
||||
verbose = as.integer(verbose)
|
||||
)
|
||||
.self$history.ref <- rbind(
|
||||
.self$history.ref,
|
||||
as.data.frame(hist$history)
|
||||
cbind(d = .self$config$d[i], as.data.frame(hist$history))
|
||||
)
|
||||
# Compute reduced reduction for the next smaller refinement
|
||||
with(tf$GradientTape() %as% tape, {
|
||||
tape$watch(inputs[[1]])
|
||||
out <- .self$nn.ref[[i]](inputs)
|
||||
})
|
||||
G <- as.matrix(tape$gradient(out, inputs[[1]]))
|
||||
B <- eigen(var(G), symmetric = TRUE)$vectors
|
||||
B <- B[, seq_len(.self$config$d[i + 1]), drop = FALSE]
|
||||
|
||||
.self$nn.ref[[i + 1]]$get_layer('reduction')$set_weights(list(B))
|
||||
# Transfer weights from current to next smaller net
|
||||
W <- as.array(.self$nn.ref[[i]]$get_layer('hidden1')$kernel)
|
||||
b <- as.array(.self$nn.ref[[i]]$get_layer('hidden1')$bias)
|
||||
B.last <- as.array(.self$nn.ref[[i]]$get_layer('reduction')$kernel)
|
||||
.self$nn.ref[[i + 1]]$get_layer('hidden1')$set_weights(list(
|
||||
t(B) %*% B.last %*% W, b))
|
||||
# These are the output layer and all hidden layers except the first
|
||||
layer.names <- Filter(function(name) {
|
||||
if (name == 'output') {
|
||||
TRUE
|
||||
} else if (name == 'hidden1') {
|
||||
FALSE
|
||||
} else {
|
||||
startsWith(name, 'hidden')
|
||||
}
|
||||
}, lapply(.self$nn.ref[[i]]$layers, `[[`, 'name'))
|
||||
# Copy current weights to first next smaller net
|
||||
for (name in layer.names) {
|
||||
.self$nn.ref[[i + 1]]$get_layer(name)$set_weights(lapply(
|
||||
.self$nn.ref[[i]]$get_layer(name)$weights, as.array
|
||||
))
|
||||
}
|
||||
}
|
||||
} else if (verbose > 0) {
|
||||
cat("Refinement Nets already trained -> continue training.\n")
|
||||
}
|
||||
|
||||
# Fit (or continue fitting) the (last, smallest) Refinement Net.
|
||||
hist <- tail(.self$nn.ref, 1)[[1]]$fit(inputs, output, ...,
|
||||
epochs = as.integer(tail(epochs, 1)),
|
||||
batch_size = as.integer(tail(batch_size, 1)),
|
||||
verbose = as.integer(verbose)
|
||||
)
|
||||
.self$history.ref <- rbind(
|
||||
.self$history.ref,
|
||||
cbind(d = tail(.self$config$d, 1), as.data.frame(hist$history))
|
||||
)
|
||||
# Extract refined reduction estimate
|
||||
.self$B.ref <- .self$nn.ref$get_layer('reduction')$get_weights()[[1]]
|
||||
|
||||
invisible(NULL)
|
||||
},
|
||||
predict = function(inputs) {
|
||||
# Issue warning if the Refinement model (Step 2) used for prediction
|
||||
# is not trained.
|
||||
if (is.null(.self$history.ref))
|
||||
warning('Refinement model not trained.')
|
||||
|
||||
predict = function(inputs, type = c('Refinement', 'OPG'),
|
||||
d = min(.self$config$d)
|
||||
) {
|
||||
type <- match.arg(type)
|
||||
# Convert inputs to tensors
|
||||
if (is.list(inputs)) {
|
||||
inputs <- Map(tf$cast, as.list(inputs), dtype = 'float32')
|
||||
} else {
|
||||
inputs <- list(tf$cast(inputs, dtype = 'float32'))
|
||||
}
|
||||
output <- .self$nn.ref(inputs)
|
||||
|
||||
if (type == 'Refinement') {
|
||||
# Issue warning if the Refinement model (Step 2) used for
|
||||
# prediction is not trained.
|
||||
if (is.null(.self$history.ref))
|
||||
warning('Refinement model not trained.')
|
||||
# Find correct reduction model
|
||||
index <- which(.self$config$d == d)
|
||||
if (!length(index)) {
|
||||
warning('There is no Refinement model of dim. ', d)
|
||||
return(NULL)
|
||||
}
|
||||
# Predict
|
||||
output <- .self$nn.ref[[index]](inputs)
|
||||
} else {
|
||||
# Issue warning if OPG model (Step 1) is not trained
|
||||
if (is.null(.self$history.opg))
|
||||
warning('OPG model not trained.')
|
||||
# Predict
|
||||
output <- .self$nn.opg(inputs)
|
||||
}
|
||||
|
||||
if (is.list(output)) {
|
||||
if (length(output) == 1L) {
|
||||
|
@ -287,24 +357,36 @@ nnsdr <- setRefClass('nnsdr',
|
|||
if (is.null(.self$history.ref))
|
||||
return(data.frame(eval.opg, row.names = "OPG"))
|
||||
|
||||
eval.ref <- .self$nn.ref$evaluate(inputs, output,
|
||||
return_dict = TRUE, verbose = 0L)
|
||||
eval.ref <- Reduce(rbind, Map(function(model, d) {
|
||||
data.frame(d = d,
|
||||
model$evaluate(inputs, output,
|
||||
return_dict = TRUE, verbose = 0L))
|
||||
}, .self$nn.ref, .self$config$d))
|
||||
|
||||
# Convert to data.frame
|
||||
eval.opg <- data.frame(eval.opg, row.names = "OPG")
|
||||
eval.ref <- data.frame(eval.ref, row.names = "Refinement")
|
||||
row.names.ref <- if (nrow(eval.ref) == 1) "Refinement"
|
||||
else paste0("Refinement-", seq_len(nrow(eval.ref)))
|
||||
eval.ref <- data.frame(eval.ref, row.names = row.names.ref)
|
||||
# Augment mutualy exclusive columns
|
||||
eval.opg[setdiff(names(eval.ref), names(eval.opg))] <- NA
|
||||
eval.ref[setdiff(names(eval.opg), names(eval.ref))] <- NA
|
||||
# Combine/Bind
|
||||
rbind(eval.opg, eval.ref)
|
||||
},
|
||||
coef = function(type = c('Refinement', 'OPG')) {
|
||||
coef = function(type = c('Refinement', 'OPG'), d = min(.self$config$d)) {
|
||||
type <- match.arg(type)
|
||||
if (type == 'Refinement') {
|
||||
.self$B.ref
|
||||
# Extract refined reduction estimate from refinement model
|
||||
# with bottleneck if dimension `d`.
|
||||
index <- which(.self$config$d == d)
|
||||
if (!length(index)) {
|
||||
warning('There is no Refinement model of dim. ', d)
|
||||
return(NULL)
|
||||
}
|
||||
.self$nn.ref[[index]]$get_layer('reduction')$get_weights()[[1]]
|
||||
} else {
|
||||
.self$B.opg
|
||||
.self$OPG[, seq_len(d), drop = FALSE]
|
||||
}
|
||||
},
|
||||
reset = function(reset = c('both', 'Refinement')) {
|
||||
|
@ -313,17 +395,20 @@ nnsdr <- setRefClass('nnsdr',
|
|||
reinitialize_weights(.self$nn.opg)
|
||||
reset_optimizer(.self$nn.opg$optimizer)
|
||||
.self$history.opg <- NULL
|
||||
.self$B.opg <- NULL
|
||||
.self$OPG <- NULL
|
||||
}
|
||||
for (model in .self$nn.ref) {
|
||||
reinitialize_weights(model)
|
||||
reset_optimizer(model$optimizer)
|
||||
}
|
||||
reinitialize_weights(.self$nn.ref)
|
||||
reset_optimizer(.self$nn.ref$optimizer)
|
||||
.self$history.ref <- NULL
|
||||
.self$B.ref <- NULL
|
||||
},
|
||||
summary = function() {
|
||||
.self$nn.opg$summary()
|
||||
for (model in .self$nn.ref) {
|
||||
cat('\n')
|
||||
.self$nn.ref$summary()
|
||||
model$summary()
|
||||
}
|
||||
}
|
||||
)
|
||||
)
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
#' Predict using the fittet neuronal networks
|
||||
#'
|
||||
#' @param object instance of class `nnsdr`
|
||||
#' @param ... arguments passed `predict` method of class `nnsdr`
|
||||
#'
|
||||
#' @export
|
||||
predict.nnsdr <- function(object, ...) {
|
||||
object$predict(...)
|
||||
}
|
Loading…
Reference in New Issue