init: NNSDR implementation (package)

This commit is contained in:
Daniel Kapla 2021-04-20 19:30:35 +02:00
parent 36d0d26418
commit 6e4f3d30a7
14 changed files with 850 additions and 0 deletions

26
.gitignore vendored Normal file
View File

@ -0,0 +1,26 @@
LaTeX/
**/data/*
**/results/*
.vscode/
# Generated man files in R package (auto generated by Roxygen)
NNSDR/man/
# Large Files / Data Files
*.pdf
*.png
*.csv
*.Rdata
*.zip
*.tar.gz
*.BAK
# LaTeX - build/database/... files
*.log
*.aux
*.bbl
*.blg
*.out

13
NNSDR/DESCRIPTION Normal file
View File

@ -0,0 +1,13 @@
Package: NNSDR
Type: Package
Title: Fusing Neuronal Networks with Sufficient Dimension Reduction
Version: 0.1
Date: 2021-04-19
Author: Daniel Kapla [aut]
Maintainer: Daniel Kapla <daniel@kapla.at>
Description: Compinint the Outer Product of Gradients (OPG) with Neuronal Networks
for estimation of the mean subspace.
License: GPL-3
Depends: methods, tensorflow (>= 2.2.0)
Encoding: UTF-8
RoxygenNote: 7.0.2

18
NNSDR/NAMESPACE Normal file
View File

@ -0,0 +1,18 @@
# Generated by roxygen2: do not edit by hand
S3method(coef,nnsdr)
S3method(summary,nnsdr)
export(dataset)
export(dist.grassmann)
export(dist.subspace)
export(get.script)
export(nnsdr)
export(parse.args)
export(reinitialize_weights)
export(reset_optimizer)
exportClasses(nnsdr)
import(methods)
import(stats)
import(tensorflow)
importFrom(stats,rbinom)
importFrom(stats,rnorm)

8
NNSDR/R/NNSDR.R Normal file
View File

@ -0,0 +1,8 @@
#' Mean Subspace estimation with Neural Nets
#'
#' Package for simulations using Neural Nets for Mean Subspace estimation.
#'
#' @author Daniel Kapla
#'
#' @docType package
"_PACKAGE"

18
NNSDR/R/coef_nnsdr.R Normal file
View File

@ -0,0 +1,18 @@
#' Extracts the OPG or refined reduction coefficients from an nnsdr class instance
#'
#' @param object nnsdr class instance
#' @param type specifies if the OPG or Refinement estimate is requested.
#' One of `Refinement` or `OPG`, default is `Refinement`.
#' @param ... ignored.
#'
#' @return Matrix
#'
#' @method coef nnsdr
#' @export
coef.nnsdr <- function(object, type, ...) {
if (missing(type)) {
object$coef()
} else {
object$coef(type)
}
}

287
NNSDR/R/datasets.R Normal file
View File

@ -0,0 +1,287 @@
#' Multivariate Normal Distribution.
#'
#' Random generation for the multivariate normal distribution.
#' \deqn{X \sim N_p(\mu, \Sigma)}{X ~ N_p(\mu, \Sigma)}
#'
#' @param n number of samples.
#' @param mu mean
#' @param sigma covariance matrix.
#'
#' @return a \eqn{n\times p}{n x p} matrix with samples in its rows.
#'
#' @examples
#' NNSDR:::rmvnorm(20, sigma = matrix(c(2, 1, 1, 2), 2))
#' NNSDR:::rmvnorm(20, mu = c(3, -1, 2))
#'
#' @keywords internal
rmvnorm <- function(n = 1, mu = rep(0, p), sigma = diag(p)) {
if (!missing(sigma)) {
p <- nrow(sigma)
} else if (!missing(mu)) {
mu <- matrix(mu, ncol = 1)
p <- nrow(mu)
} else {
stop("At least one of 'mu' or 'sigma' must be supplied.")
}
return(rep(mu, each = n) + matrix(rnorm(n * p), n) %*% chol(sigma))
}
#' Multivariate t Distribution.
#'
#' Random generation from multivariate t distribution (student distribution).
#'
#' @param n number of samples.
#' @param mu mean
#' @param sigma a \eqn{k\times k}{k x k} positive definite matrix. If the degree
#' \eqn{\nu} if bigger than 2 the created covariance is
#' \deqn{var(x) = \Sigma\frac{\nu}{\nu - 2}}
#' for \eqn{\nu > 2}.
#' @param df degree of freedom \eqn{\nu}.
#'
#' @return a \eqn{n\times p}{n x p} matrix with samples in its rows.
#'
#' @examples
#' NNSDR:::rmvt(20, c(0, 1), matrix(c(3, 1, 1, 2), 2), 3)
#' NNSDR:::rmvt(20, sigma = matrix(c(2, 1, 1, 2), 2), df = 3)
#' NNSDR:::rmvt(20, mu = c(3, -1, 2), df = 3)
#'
#' @keywords internal
rmvt <- function(n = 1, mu = rep(0, p), sigma = diag(p), df = Inf) {
if (!missing(sigma)) {
p <- nrow(sigma)
} else if (!missing(mu)) {
mu <- matrix(mu, ncol = 1)
p <- nrow(mu)
} else {
stop("At least one of 'mu' or 'sigma' must be supplied.")
}
if (df == Inf) {
Z <- 1
} else {
Z <- sqrt(df / rchisq(n, df))
}
return(rmvnorm(n, sigma = sigma) * Z + rep(mu, each = n))
}
#' Generalized Normal Distribution.
#'
#' Random generation for generalized Normal Distribution.
#'
#' @param n Number of generated samples.
#' @param mu mean.
#' @param alpha first shape parameter.
#' @param beta second shape parameter.
#'
#' @return numeric array of length \eqn{n}.
#'
#' @keywords internal
rgnorm <- function(n = 1, mu = 0, alpha = 1, beta = 1) {
if (alpha <= 0 | beta <= 0) {
stop("alpha and beta must be positive.")
}
lambda <- (1 / alpha)^beta
scales <- qgamma(runif(n), shape = 1 / beta, scale = 1 / lambda)^(1 / beta)
return(scales * ((-1)^rbinom(n, 1, 0.5)) + mu)
}
#' Laplace distribution
#'
#' Random generation for Laplace distribution.
#'
#' @param n Number of generated samples.
#' @param mu mean.
#' @param sd standard deviation.
#'
#' @return numeric array of length \eqn{n}.
#'
#' @keywords internal
rlaplace <- function(n = 1, mu = 0, sd = 1) {
U <- runif(n, -0.5, 0.5)
scale <- sd / sqrt(2)
return(mu - scale * sign(U) * log(1 - 2 * abs(U)))
}
#' Generates test datasets.
#'
#' Provides sample datasets.
#' The general model is given by:
#' \deqn{Y = g(B'X) + \epsilon}
#'
#' @param name One of \code{"M1"}, ..., \code{"M9"}.
#' Alternative just the dataset number 1-9.
#' @param n number of samples.
#' @param p Dimension of random variable \eqn{X}.
#' @param sd standard diviation for error term \eqn{\epsilon}.
#' @param ... Additional parameters only for "M2" (namely \code{pmix} and
#' \code{lambda}), see: below.
#'
#' @return List with elements
#' \itemize{
#' \item{X}{data, a \eqn{n\times p}{n x p} matrix.}
#' \item{Y}{response.}
#' \item{B}{the dim-reduction matrix}
#' \item{name}{Name of the dataset (name parameter)}
#' }
#'
#' @section M1:
#' The predictors are distributed as
#' \eqn{X\sim N_p(0, \Sigma)}{X ~ N_p(0, \Sigma)} with
#' \eqn{\Sigma_{i, j} = 0.5^{|i - j|}}{\Sigma_ij = 0.5^|i - j|} for
#' \eqn{i, j = 1,..., p} for a subspace dimension of \eqn{k = 1} with a default
#' of \eqn{n = 100} data points. \eqn{p = 20},
#' \eqn{b_1 = (1,1,1,1,1,1,0,...,0)' / \sqrt{6}\in\mathcal{R}^p}{b_1 = (1,1,1,1,1,1,0,...,0)' / sqrt(6)}, and \eqn{Y} is
#' given as \deqn{Y = cos(b_1'X) + \epsilon} where \eqn{\epsilon} is
#' distributed as generalized normal distribution with location 0,
#' shape-parameter 0.5, and the scale-parameter is chosen such that
#' \eqn{Var(\epsilon) = 0.5}.
#' @section M2:
#' The predictors are distributed as \eqn{X \sim Z 1_p \lambda + N_p(0, I_p)}{X ~ Z 1_p \lambda + N_p(0, I_p)}. with
#' \eqn{Z \sim 2 Binom(p_{mix}) - 1\in\{-1, 1\}}{Z~2Binom(pmix)-1} where
#' \eqn{1_p} is the \eqn{p}-dimensional vector of one's, for a subspace
#' dimension of \eqn{k = 1} with a default of \eqn{n = 100} data points.
#' \eqn{p = 20}, \eqn{b_1 = (1,1,1,1,1,1,0,...,0)' / \sqrt{6}\in\mathcal{R}^p}{b_1 = (1,1,1,1,1,1,0,...,0)' / sqrt(6)},
#' and \eqn{Y} is \deqn{Y = cos(b_1'X) + 0.5\epsilon} where \eqn{\epsilon} is
#' standard normal.
#' Defaults for \code{pmix} is 0.3 and \code{lambda} defaults to 1.
#' @section M3:
#' The predictors are distributed as \eqn{X\sim N_p(0, I_p)}{X~N_p(0, I_p)}
#' for a subspace
#' dimension of \eqn{k = 1} with a default of \eqn{n = 100} data points.
#' \eqn{p = 20}, \eqn{b_1 = (1,1,1,1,1,1,0,...,0)' / \sqrt{6}\in\mathcal{R}^p}{b_1 = (1,1,1,1,1,1,0,...,0)' / sqrt(6)},
#' and \eqn{Y} is
#' \deqn{Y = 2 log(|b_1'X| + 2) + 0.5\epsilon} where \eqn{\epsilon} is
#' standard normal.
#' @section M4:
#' The predictors are distributed as \eqn{X\sim N_p(0,\Sigma)}{X~N_p(0,\Sigma)}
#' with \eqn{\Sigma_{i, j} = 0.5^{|i - j|}}{\Sigma_ij = 0.5^|i - j|} for
#' \eqn{i, j = 1,..., p} for a subspace dimension of \eqn{k = 2} with a default
#' of \eqn{n = 100} data points. \eqn{p = 20},
#' \eqn{b_1 = (1,1,1,1,1,1,0,...,0)' / \sqrt{6}\in\mathcal{R}^p}{b_1 = (1,1,1,1,1,1,0,...,0)' / sqrt(6)},
#' \eqn{b_2 = (1,-1,1,-1,1,-1,0,...,0)' / \sqrt{6}\in\mathcal{R}^p}{b_2 = (1,-1,1,-1,1,-1,0,...,0)' / sqrt(6)}
#' and \eqn{Y} is given as \deqn{Y = \frac{b_1'X}{0.5 + (1.5 + b_2'X)^2} + 0.5\epsilon}{Y = (b_1'X) / (0.5 + (1.5 + b_2'X)^2) + 0.5\epsilon}
#' where \eqn{\epsilon} is standard normal.
#' @section M5:
#' The predictors are distributed as \eqn{X\sim U([0,1]^p)}{X~U([0, 1]^p)}
#' where \eqn{U([0, 1]^p)} is the uniform distribution with
#' independent components on the \eqn{p}-dimensional hypercube for a subspace
#' dimension of \eqn{k = 2} with a default of \eqn{n = 200} data points.
#' \eqn{p = 20},
#' \eqn{b_1 = (1,1,1,1,1,1,0,...,0)' / \sqrt{6}\in\mathcal{R}^p}{b_1 = (1,1,1,1,1,1,0,...,0)' / sqrt(6)},
#' \eqn{b_2 = (1,-1,1,-1,1,-1,0,...,0)' / \sqrt{6}\in\mathcal{R}^p}{b_2 = (1,-1,1,-1,1,-1,0,...,0)' / sqrt(6)}
#' and \eqn{Y} is given as \deqn{Y = cos(\pi b_1'X)(b_2'X + 1)^2 + 0.5\epsilon}
#' where \eqn{\epsilon} is standard normal.
#' @section M6:
#' The predictors are distributed as \eqn{X\sim N_p(0, I_p)}{X~N_p(0, I_p)}
#' for a subspace dimension of \eqn{k = 3} with a default of \eqn{n = 200} data
#' point. \eqn{p = 20, b_1 = e_1, b_2 = e_2}, and \eqn{b_3 = e_p}, where
#' \eqn{e_j} is the \eqn{j}-th unit vector in the \eqn{p}-dimensional space.
#' \eqn{Y} is given as \deqn{Y = (b_1'X)^2+(b_2'X)^2+(b_3'X)^2+0.5\epsilon}
#' where \eqn{\epsilon} is standard normal.
#' @section M7:
#' The predictors are distributed as \eqn{X\sim t_3(I_p)}{X~t_3(I_p)} where
#' \eqn{t_3(I_p)} is the standard multivariate t-distribution with 3 degrees of
#' freedom, for a subspace dimension of \eqn{k = 4} with a default of
#' \eqn{n = 200} data points.
#' \eqn{p = 20, b_1 = e_1, b_2 = e_2, b_3 = e_3}, and \eqn{b_4 = e_p}, where
#' \eqn{e_j} is the \eqn{j}-th unit vector in the \eqn{p}-dimensional space.
#' \eqn{Y} is given as \deqn{Y = (b_1'X)(b_2'X)^2+(b_3'X)(b_4'X)+0.5\epsilon}
#' where \eqn{\epsilon} is distributed as generalized normal distribution with
#' location 0, shape-parameter 1, and the scale-parameter is chosen such that
#' \eqn{Var(\epsilon) = 0.25}.
#'
#' @import stats
#' @importFrom stats rnorm rbinom
#' @export
dataset <- function(name = "M1", n = NULL, p = 20, sd = 0.5, ...) {
name <- toupper(name)
if (nchar(name) == 1) { name <- paste0("M", name) }
if (name == "M1") {
if (missing(n)) { n <- 100 }
# B ... `p x 1`
B <- matrix(c(rep(1 / sqrt(6), 6), rep(0, p - 6)), ncol = 1)
X <- rmvnorm(n, sigma = 0.5^abs(outer(1:p, 1:p, FUN = `-`)))
beta <- 0.5
Y <- cos(X %*% B) + rgnorm(n, 0,
alpha = sqrt(sd^2 * gamma(1 / beta) / gamma(3 / beta)),
beta = beta
)
} else if (name == "M2") {
if (missing(n)) { n <- 100 }
params <- list(...)
pmix <- if (is.null(params$pmix)) { 0.3 } else { params$pmix }
lambda <- if (is.null(params$lambda)) { 1 } else { params$lambda }
# B ... `p x 1`
B <- matrix(c(rep(1 / sqrt(6), 6), rep(0, p - 6)), ncol = 1)
Z <- 2 * rbinom(n, 1, pmix) - 1
X <- matrix(rep(lambda * Z, p) + rnorm(n * p), n)
Y <- cos(X %*% B) + rnorm(n, 0, sd)
} else if (name == "M3") {
if (missing(n)) { n <- 100 }
# B ... `p x 1`
B <- matrix(c(rep(1 / sqrt(6), 6), rep(0, p - 6)), ncol = 1)
X <- matrix(rnorm(n * p), n)
Y <- 2 * log(2 + abs(X %*% B)) + rnorm(n, 0, sd)
} else if (name == "M4") {
if (missing(n)) { n <- 200 }
# B ... `p x 2`
B <- cbind(
c(rep(1 / sqrt(6), 6), rep(0, p - 6)),
c(rep(c(1, -1), 3) / sqrt(6), rep(0, p - 6))
)
X <- rmvnorm(n, sigma = 0.5^abs(outer(1:p, 1:p, FUN = `-`)))
XB <- X %*% B
Y <- (XB[, 1]) / (0.5 + (XB[, 2] + 1.5)^2) + rnorm(n, 0, sd)
} else if (name == "M5") {
if (missing(n)) { n <- 200 }
# B ... `p x 2`
B <- cbind(
c(rep(1, 6), rep(0, p - 6)),
c(rep(c(1, -1), 3), rep(0, p - 6))
) / sqrt(6)
X <- matrix(runif(n * p), n)
XB <- X %*% B
Y <- cos(XB[, 1] * pi) * (XB[, 2] + 1)^2 + rnorm(n, 0, sd)
} else if (name == "M6") {
if (missing(n)) { n <- 200 }
# B ... `p x 3`
B <- diag(p)[, -(3:(p - 1))]
X <- matrix(rnorm(n * p), n)
Y <- rowSums((X %*% B)^2) + rnorm(n, 0, sd)
} else if (name == "M7") {
if (missing(n)) { n <- 400 }
# B ... `p x 4`
B <- diag(p)[, -(4:(p - 1))]
# "R"andom "M"ulti"V"ariate "S"tudent
X <- rmvt(n = n, sigma = diag(p), df = 3)
XB <- X %*% B
Y <- (XB[, 1]) * (XB[, 2])^2 + (XB[, 3]) * (XB[, 4])
Y <- Y + rlaplace(n, 0, sd)
} else if (name == "M8") {
# see: "Local Linear Forests" <arXiv:1807.11408>
if (missing(n)) { n <- 600 }
if (missing(p)) { p <- 20 } # 10 and 50 in "Local Linear Forests"
if (missing(sd)) { sd <- 5 } # or 20
B <- diag(1, p, 4)
B[, 4] <- c(0, 0, 0, 2, 1, rep(0, p - 5))
X <- matrix(runif(n * p), n, p)
XB <- X %*% B
Y <- 10 * sin(pi * XB[, 1] * XB[, 2]) + 20 * (XB[, 3] - 0.5)^2 + 5 * XB[, 4] + rnorm(n, sd = sd)
Y <- as.matrix(Y)
} else if (name == "M9") {
if (missing(n)) { n <- 300 }
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] + (0.5 + X[, 2])^2 * rnorm(n)
B <- diag(1, p, 2)
} else {
stop("Got unknown dataset name.")
}
return(list(X = X, Y = as.matrix(Y), B = B, name = name))
}

24
NNSDR/R/dist_grassmann.R Normal file
View File

@ -0,0 +1,24 @@
#' Grassmann distance
#'
#' @param A,B Basis matrices as representations of elements of the Grassmann
#' manifold.
#' @param is.ortho Boolean to specify if `A` and `B` are semi-orthogonal (if
#' false, both arguments are `qr` decomposed)
#' @param tol passed to `qr`, ignored if `is.ortho` is `true`.
#'
#' @seealso
#' K. Ye and L.-H. Lim (2016) "Schubert varieties and distances between
#' subspaces of different dimensions" <arXiv:1407.0900>
#'
#' @export
dist.grassmann <- function(A, B, is.ortho = FALSE, tol = 1e-7) {
if (!is.ortho) {
A <- qr.Q(qr(A, tol))
B <- qr.Q(qr(B, tol))
} else {
A <- as.matrix(A)
B <- as.matrix(B)
}
sqrt(sum(acos(pmin(La.svd(crossprod(A, B), 0L, 0L)$d, 1))^2))
}

37
NNSDR/R/dist_subspace.R Normal file
View File

@ -0,0 +1,37 @@
#' Subspace distance
#'
#' @param A,B Basis matrices as representations of elements of the Grassmann
#' manifold.
#' @param is.ortho Boolean to specify if `A` and `B` are semi-orthogonal. If
#' false, the projection matrices are computed as
#' \deqn{P_A = A (A' A)^{-1} A'}
#' otherwise just \eqn{P_A = A A'} since \eqn{A' A} is the identity.
#' @param normalize Boolean to specify if the distance shall be normalized.
#' Meaning, the maximal distance scaled to be \eqn{1} independent of dimensions.
#'
#' @seealso
#' K. Ye and L.-H. Lim (2016) "Schubert varieties and distances between
#' subspaces of different dimensions" <arXiv:1407.0900>
#'
#' @export
dist.subspace <- function (A, B, is.ortho = FALSE, normalize = FALSE) {
if (!is.matrix(A)) A <- as.matrix(A)
if (!is.matrix(B)) B <- as.matrix(B)
if (is.ortho) {
PA <- tcrossprod(A, A)
PB <- tcrossprod(B, B)
} else {
PA <- A %*% solve(t(A) %*% A, t(A))
PB <- B %*% solve(t(B) %*% B, t(B))
}
if (normalize) {
rankSum <- ncol(A) + ncol(B)
c <- 1 / sqrt(min(rankSum, 2 * nrow(A) - rankSum))
} else {
c <- sqrt(2)
}
c * norm(PA - PB, type = "F")
}

12
NNSDR/R/get_script.R Normal file
View File

@ -0,0 +1,12 @@
#' Gets the `Rscript` file name
#'
#' @note only relevant in scripts (useless in interactive `R` sessions)
#'
#' @return character array of the file name or empty
#'
#' @export
get.script <- function() {
args <- commandArgs()
sub('--file=', '', args[startsWith(args, '--file=')])
}

279
NNSDR/R/nnsdr_class.R Normal file
View File

@ -0,0 +1,279 @@
Sys.setenv(TF_CPP_MIN_LOG_LEVEL = "3")
#' Build MLP
#'
#' @param input_shapes TODO:
#' @param d TODO:
#' @param name TODO:
#' @param add_reduction TODO:
#' @param hidden_units TODO:
#' @param activation TODO:
#' @param dropout TODO:
#' @param loss TODO:
#' @param optimizer TODO:
#' @param metrics TODO:
#' @param trainable_reduction TODO:
#'
#' @import tensorflow
#' @keywords internal
build.MLP <- function(input_shapes, d, name, add_reduction,
output_shape = 1L,
hidden_units = 512L,
activation = 'relu',
dropout = 0.4,
loss = 'MSE',
optimizer = 'RMSProp',
metrics = NULL,
trainable_reduction = TRUE
) {
K <- tf$keras
inputs <- Map(K$layers$Input,
shape = as.integer(input_shapes), # drops names (concatenate key error)
name = if (is.null(names(input_shapes))) "" else names(input_shapes)
)
mlp_inputs <- if (add_reduction) {
reduction <- K$layers$Dense(
units = d,
use_bias = FALSE,
kernel_constraint = function(w) { # polar projection
lhs <- tf$linalg$sqrtm(tf$matmul(w, w, transpose_a = TRUE))
tf$transpose(tf$linalg$solve(lhs, tf$transpose(w)))
},
trainable = trainable_reduction,
name = 'reduction'
)(inputs[[1]])
c(reduction, inputs[-1])
} else {
inputs
}
out <- if (length(inputs) == 1) {
mlp_inputs[[1]]
} else {
K$layers$concatenate(mlp_inputs, axis = 1L, name = 'input_mlp')
}
for (i in seq_along(hidden_units)) {
out <- K$layers$Dense(units = hidden_units[i], activation = activation,
name = paste0('hidden', i))(out)
if (dropout > 0)
out <- K$layers$Dropout(rate = dropout, name = paste0('dropout', i))(out)
}
out <- K$layers$Dense(units = output_shape, name = 'output')(out)
mlp <- K$models$Model(inputs = inputs, outputs = out, name = name)
mlp$compile(loss = loss, optimizer = optimizer, metrics = metrics)
mlp
}
#' Base Neuronal Network model class
#'
#' @examples
#' model <- nnsdr$new(
#' input_shapes = list(x = 7L),
#' d = 2L, hidden_units = 128L
#' )
#'
#' @import methods tensorflow
#' @export nnsdr
#' @exportClass nnsdr
nnsdr <- setRefClass('nnsdr',
fields = list(
config = 'list',
nn.opg = 'ANY',
nn.ref = 'ANY',
history.opg = 'ANY',
history.ref = 'ANY',
B.opg = 'ANY',
B.ref = 'ANY',
history = function() {
if (is.null(.self$history.opg))
return(NULL)
history <- data.frame(
.self$history.opg,
model = factor('OPG'),
epoch = seq_len(nrow(.self$history.opg))
)
if (!is.null(.self$history.ref))
history <- rbind(history, data.frame(
.self$history.ref,
model = factor('Refinement'),
epoch = seq_len(nrow(.self$history.ref))
))
history
}
),
methods = list(
initialize = function(input_shapes, d, output_shape = 1L, ...) {
# Set configuration.
.self$config <- c(list(
input_shapes = input_shapes,
d = as.integer(d),
output_shape = output_shape
), list(...))
# Build OPG (Step 1) and Refinement (Step 2) Neuronal Networks
.self$nn.opg <- do.call(build.MLP, c(.self$config, list(
name = 'OPG', add_reduction = FALSE
)))
.self$nn.ref <- do.call(build.MLP, c(.self$config, list(
name = 'Refinement', add_reduction = TRUE
)))
# Set initial history field values. If and only if the `history.*`
# fields are `NULL`, then the Nets are NOT trained.
.self$history.opg <- NULL
.self$history.ref <- NULL
# Set (not jet available) reduction estimates
.self$B.opg <- NULL
.self$B.ref <- NULL
},
fit = function(inputs, output, epochs = 1L, batch_size = 32L,
initializer = c('random', 'fromOPG'), ..., verbose = 0L
) {
if (is.list(inputs)) {
inputs <- Map(tf$cast, as.list(inputs), dtype = 'float32')
} else {
inputs <- list(tf$cast(inputs, dtype = 'float32'))
}
initializer <- match.arg(initializer)
# Check for OPG history (Step 1), if available skip it.
if (is.null(.self$history.opg)) {
# Fit OPG Net and store training history.
hist <- .self$nn.opg$fit(inputs, output, ...,
epochs = as.integer(head(epochs, 1)),
batch_size = as.integer(head(batch_size, 1)),
verbose = as.integer(verbose)
)
.self$history.opg <- as.data.frame(hist$history)
} else if (verbose > 0) {
cat("OPG already trained -> skip OPG training.\n")
}
# Compute OPG estimate of the Reduction matrix 'B'.
# Always compute, different inputs change the estimate.
with(tf$GradientTape() %as% tape, {
tape$watch(inputs[[1]])
out <- .self$nn.opg(inputs)
})
G <- as.matrix(tape$gradient(out, inputs[[1]]))
B <- eigen(var(G), symmetric = TRUE)$vectors
B <- B[, 1:.self$config$d, drop = FALSE]
.self$B.opg <- B
# Check for need to initialize the Refinement Net.
if (is.null(.self$history.ref)) {
# Set Reduction layer
.self$nn.ref$get_layer('reduction')$set_weights(list(B))
# Check initialization (for random keep random initialization)
if (initializer == 'fromOPG') {
# Initialize Refinement Net weights from the OPG Net.
W <- as.array(.self$nn.opg$get_layer('hidden1')$kernel)
W <- rbind(
t(B) %*% W[1:nrow(B), , drop = FALSE],
W[-(1:nrow(B)), , drop = FALSE]
)
b <- as.array(.self$nn.opg$get_layer('hidden1')$bias)
.self$nn.ref$get_layer('hidden1')$set_weights(list(W, b))
# Get layer names with weights to be initialized from `nn.opg`
# These are the output layer and all hidden layers except the first
layer.names <- Filter(function(name) {
if (name == 'output') {
TRUE
} else if (name == 'hidden1') {
FALSE
} else {
startsWith(name, 'hidden')
}
}, lapply(.self$nn.opg$layers, `[[`, 'name'))
# Copy `nn.opg` weights to `nn.ref`
for (name in layer.names) {
.self$nn.ref$get_layer(name)$set_weights(lapply(
.self$nn.opg$get_layer(name)$weights, as.array
))
}
}
} else if (verbose > 0) {
cat("Refinement Net already trained -> continue training.\n")
}
# Fit (or continue fitting) the Refinement Net.
hist <- .self$nn.ref$fit(inputs, output, ...,
epochs = as.integer(tail(epochs, 1)),
batch_size = as.integer(tail(batch_size, 1)),
verbose = as.integer(verbose)
)
.self$history.ref <- rbind(
.self$history.ref,
as.data.frame(hist$history)
)
# Extract refined reduction estimate
.self$B.ref <- .self$nn.ref$get_layer('reduction')$get_weights()[[1]]
invisible(NULL)
},
predict = function(inputs) {
# Issue warning if the Refinement model (Step 2) used for prediction
# is not trained.
if (is.null(.self$history.ref))
warning('Refinement model not trained.')
if (is.list(inputs)) {
inputs <- Map(tf$cast, as.list(inputs), dtype = 'float32')
} else {
inputs <- list(tf$cast(inputs, dtype = 'float32'))
}
output <- .self$nn.ref(inputs)
if (is.list(output)) {
if (length(output) == 1L) {
as.array(output[[1]])
} else {
Map(as.array, output)
}
} else {
as.array(output)
}
},
coef = function(type = c('Refinement', 'OPG')) {
type <- match.arg(type)
if (type == 'Refinement') {
.self$B.ref
} else {
.self$B.opg
}
},
reset = function(reset = c('both', 'Refinement')) {
reset <- match.arg(reset)
if (reset == 'both') {
reinitialize_weights(.self$nn.opg)
reset_optimizer(.self$nn.opg$optimizer)
.self$history.opg <- NULL
.self$B.opg <- NULL
}
reinitialize_weights(.self$nn.ref)
reset_optimizer(.self$nn.ref$optimizer)
.self$history.ref <- NULL
.self$B.ref <- NULL
},
summary = function() {
.self$nn.opg$summary()
cat('\n')
.self$nn.ref$summary()
}
)
)
nnsdr$lock('config')

35
NNSDR/R/parse_args.R Normal file
View File

@ -0,0 +1,35 @@
#' Parses script arguments.
#'
#' @param defaults list of default parameters. Names of the provided defaults
#' define the allowed parameters.
#' @param args Arguments to parge, if missing the Rscript params are taken.
#'
#' @return calling script arguments of `Rscript`
#'
#' @export
parse.args <- function(defaults, args) {
if (missing(args))
args <- commandArgs(trailingOnly = TRUE)
if (length((args)) == 0)
return(defaults)
args <- strsplit(sub('--', '', args, fixed = TRUE), '=')
values <- Map(`[`, args, 2)
names(values) <- unlist(Map(`[`, args, 1))
if (!all(names(values) %in% names(defaults)))
stop('Found unknown script parameter')
for (i in seq_along(defaults)) {
name <- names(defaults)[i]
if (name %in% names(values)) {
value <- unlist(strsplit(values[[name]], ',', fixed = TRUE))
value <- eval(call(paste0('as.', typeof(defaults[[name]])), value))
defaults[[name]] <- value
}
}
defaults
}

View File

@ -0,0 +1,42 @@
#' Re-initialize model weights.
#'
#' An in-place model re-initialization. Intended for simulations to avoid
#' rebuilding the same model architecture for multiple simulation runs.
#'
#' @param model A `keras` model.
#'
#' @seealso https://github.com/keras-team/keras/issues/341
#' @examples
#' # library(tensorflow) # v2
#' K <- tf$keras
#' model <- K$models$Sequential(list(
#' K$layers$Dense(units = 7L, input_shape = list(3L)),
#' K$layers$Dense(units = 1L)
#' ))
#' model$compile(loss = 'MSE', optimizer = K$optimizers$RMSprop())
#'
#' model$weights
#' reinitialize_weights(model)
#' model$weights
#'
#' @export
reinitialize_weights <- function(model) {
for (layer in model$layers) {
# Unwrap wrapped layers.
if (any(endsWith(class(layer), 'Wrapper')))
layer <- layer$layer
# Re-initialize kernel and bias weight variables.
for (var in layer$weights) {
if (any(grep('/recurrent_kernel:', var$name, fixed = TRUE))) {
var$assign(layer$recurrent_initializer(var$shape, var$dtype))
} else if (any(grep('/kernel:', var$name, fixed = TRUE))) {
var$assign(layer$kernel_initializer(var$shape, var$dtype))
} else if (any(grep('/bias:', var$name, fixed = TRUE))) {
var$assign(layer$bias_initializer(var$shape, var$dtype))
} else {
stop("Unknown initialization for variable ", var$name)
}
}
}
}

39
NNSDR/R/reset_optimizer.R Normal file
View File

@ -0,0 +1,39 @@
#' Reset TensorFlow optimizer.
#'
#' @param optimizer a \pkg{tensorflow} optimizer instance
#'
#' @examples
#' # Create example toy data
#'
#' # library(tensorflow) # v2
#' K <- tf$keras
#' model <- K$models$Sequential(list(
#' K$layers$Dense(units = 7L, input_shape = list(3L)),
#' K$layers$Dense(units = 1L)
#' ))
#' model$compile(loss = 'MSE', optimizer = 'RMSprop')
#'
#' \donttest{
#' model$fit(input) # Fit the model
#' }
#'
#' reinitialize_weights(model)
#' reset_optimizer(model$optimizer)
#'
#' \donttest{
#' model$fit(input) # Fit the model again completely independent of the first fit.
#' }
#'
#' @note Works for Adam, RMSprop properly (other optimizes are not tested!)
#' @note see source and search for `_create_slots` and `add_slot`.
#' @seealso https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/optimizer_v2/optimizer_v2.py
#' @seealso https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/optimizer_v2/rmsprop.py
#' @seealso https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/optimizer_v2/adam.py
#'
#' @export
reset_optimizer <- function(optimizer) {
for (var in optimizer$variables()) {
var$assign(tf$zeros_like(var))
}
}

12
NNSDR/R/summary_nnsdr.R Normal file
View File

@ -0,0 +1,12 @@
#' Summary for the OPG and Refinement model of an nnsdr class instance
#'
#' @param object nnsdr class instance
#' @param ... ignored.
#'
#' @return No return value, prints human readable summary.
#'
#' @method summary nnsdr
#' @export
summary.nnsdr <- function(object, ...) {
object$summary()
}