#' Tensor Mode Crossproduct #' #' C = A_(m) t(A_(m)) #' #' For a matrix `A`, the first mode is `mcrossprod(A, 1)` equivalent to #' `A %*% t(A)` (`tcrossprod`). On the other hand for mode two `mcrossprod(A, 2)` #' the equivalence is `t(A) %*% A` (`crossprod`). #' #' @param A multi-dimensional array #' @param mode index (1-indexed) #' #' @returns matrix of dimensions \code{dim(A)[mode] by dim(A)[mode]}. #' #' @note equivalent to \code{tcrossprod(mat(A, mode))} with around the same #' performance but only allocates the result matrix. #' #' @examples #' dimA <- c(2, 5, 7, 11) #' A <- array(rnorm(prod(dimA)), dim = dimA) #' stopifnot(exprs = { #' all.equal(mcrossprod(A, mode = 1), tcrossprod(mat(A, 1))) #' all.equal(mcrossprod(A, , 2), tcrossprod(mat(A, 2))) #' all.equal(mcrossprod(A, , mode = 3), tcrossprod(mat(A, 3))) #' all.equal(mcrossprod(A, A, 4), tcrossprod(mat(A, 4))) #' }) #' #' dimA <- c(2, 5, 7, 11) #' dimB <- c(3, 5, 7, 11) # same as dimA except 1. entry #' A <- array(rnorm(prod(dimA)), dim = dimA) #' B <- array(rnorm(prod(dimB)), dim = dimB) #' stopifnot(all.equal( #' mcrossprod(A, B, 1), #' tcrossprod(mat(A, 1), mat(B, 1)) #' )) #' #' dimA <- c(5, 2, 7, 11) #' dimB <- c(5, 3, 7, 11) # same as dimA except 2. entry #' A <- array(rnorm(prod(dimA)), dim = dimA) #' B <- array(rnorm(prod(dimB)), dim = dimB) #' stopifnot(all.equal( #' mcrossprod(A, B, mode = 2L), #' tcrossprod(mat(A, 2), mat(B, 2)) #' )) #' #' @export mcrossprod <- function(A, B, mode = length(dim(A))) { storage.mode(A) <- "double" if (missing(B)) { .Call("C_mcrossprod_sym", A, as.integer(mode)) } else { storage.mode(B) <- "double" .Call("C_mcrossprod", A, B, as.integer(mode)) } }