library(tensorPredictors) # Load as 3D predictors `X` and flat response `y` and `F = y` with per person dim. 1 x 1 c(X, F, y) %<-% local({ # Load from file ds <- readRDS("eeg_data.rds") # Dimension values n <- nrow(ds) # sample size (nr. of people) p <- 64L # nr. of predictors (count of sensorce) t <- 256L # nr. of time points (measurements) # Extract dimension names nNames <- ds$PersonID tNames <- as.character(seq(t)) pNames <- unlist(strsplit(colnames(ds)[2 + t * seq(p)], "_"))[c(TRUE, FALSE)] # Split into predictors (with proper dims and names) and response X <- array(as.matrix(ds[, -(1:2)]), dim = c(person = n, time = t, sensor = p), dimnames = list(person = nNames, time = tNames, sensor = pNames) ) y <- ds$Case_Control list(X, array(y, c(n, 1L, 1L)), y) }) # fit a tensor normal model to the data sample axis 1 indexes persons) fit.gmlm <- gmlm_tensor_normal(X, F, sample.axis = 1L) # plot the fitted mode wise reductions (for time and sensor axis) with(fit.gmlm, { par.reset <- par(mfrow = c(2, 1)) plot(seq(0, 1, len = 256), betas[[1]], main = "Time", xlab = "Time [s]", ylab = expression(beta[1])) plot(betas[[2]], main = "Sensors", xlab = "Sensor Index", ylab = expression(beta[2])) par(par.reset) }) #' (2D)^2 PCA preprocessing #' #' @param tpc Number of "t"ime "p"rincipal "c"omponents. #' @param ppc Number of "p"redictor "p"rincipal "c"omponents. preprocess <- function(X, tpc, ppc) { # Mode covariances (for predictor and time point modes) c(Sigma_t, Sigma_p) %<-% mcov(X, sample.axis = 1L) # "predictor" (sensor) and time point principal components V_t <- svd(Sigma_t, tpc, 0L)$u V_p <- svd(Sigma_p, ppc, 0L)$u # reduce with mode wise PCs mlm(X, list(V_t, V_p), modes = 2:3, transposed = TRUE) } #' Leave-one-out prediction #' #' @param X 3D EEG data (preprocessed or not) #' @param F binary responce `y` as a 3D tensor, every obs. is a 1 x 1 matrix loo.predict <- function(X, F) { sapply(seq_len(dim(X)[1L]), function(i) { # Fit with i'th observation removes fit <- gmlm_tensor_normal(X[-i, , ], F[-i, , , drop = FALSE], sample.axis = 1L) # Reduce the entire data set r <- as.vector(mlm(X, fit$betas, modes = 2:3, transpose = TRUE)) # Fit a logit model on reduced data with i'th observation removed logit <- glm(y ~ r, family = binomial(link = "logit"), data = data.frame(y = y[-i], r = r[-i]) ) # predict i'th response given i'th reduced observation y.hat <- predict(logit, newdata = data.frame(r = r[i]), type = "response") # report progress cat(sprintf("dim: (%d, %d) - %3d/%d\n", dim(X)[2L], dim(X)[3L], i, dim(X)[1L])) y.hat }) } ### Classification performance measures # acc: Accuracy. P(Yhat = Y). Estimated as: (TP+TN)/(P+N). acc <- function(y.true, y.pred) mean(round(y.pred) == y.true) # err: Error rate. P(Yhat != Y). Estimated as: (FP+FN)/(P+N). err <- function(y.true, y.pred) mean(round(y.pred) != y.true) # fpr: False positive rate. P(Yhat = + | Y = -). aliases: Fallout. fpr <- function(y.true, y.pred) mean((round(y.pred) == 1)[y.true == 0]) # tpr: True positive rate. P(Yhat = + | Y = +). aliases: Sensitivity, Recall. tpr <- function(y.true, y.pred) mean((round(y.pred) == 1)[y.true == 1]) # fnr: False negative rate. P(Yhat = - | Y = +). aliases: Miss. fnr <- function(y.true, y.pred) mean((round(y.pred) == 0)[y.true == 1]) # tnr: True negative rate. P(Yhat = - | Y = -). tnr <- function(y.true, y.pred) mean((round(y.pred) == 0)[y.true == 0]) # auc: Area Under the Curve auc <- function(y.true, y.pred) as.numeric(pROC::roc(y.true, y.pred, quiet = TRUE)$auc) auc.sd <- function(y.true, y.pred) sqrt(pROC::var(pROC::roc(y.true, y.pred, quiet = TRUE))) # perform preprocessed (reduced) and raw (not reduced) leave-one-out prediction y.hat.3.4 <- loo.predict(preprocess(X, 3, 4), F) y.hat.15.15 <- loo.predict(preprocess(X, 15, 15), F) y.hat.20.30 <- loo.predict(preprocess(X, 20, 30), F) y.hat <- loo.predict(X, F) # classification performance measures table by leave-one-out cross-validation (loo.cv <- apply(cbind(y.hat.3.4, y.hat.15.15, y.hat.20.30, y.hat), 2, function(y.pred) { sapply(c("acc", "err", "fpr", "tpr", "fnr", "tnr", "auc", "auc.sd"), function(FUN) { match.fun(FUN)(y, y.pred) }) })) #> y.hat.3.4 y.hat.15.15 y.hat.20.30 y.hat #> acc 0.79508197 0.78688525 0.78688525 0.78688525 #> err 0.20491803 0.21311475 0.21311475 0.21311475 #> fpr 0.35555556 0.40000000 0.40000000 0.40000000 #> tpr 0.88311688 0.89610390 0.89610390 0.89610390 #> fnr 0.11688312 0.10389610 0.10389610 0.10389610 #> tnr 0.64444444 0.60000000 0.60000000 0.60000000 #> auc 0.85108225 0.83838384 0.83924964 0.83896104 #> auc.sd 0.03584791 0.03760531 0.03751307 0.03754553